Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.
Keywords: Climate Change, Downscaling, GCM, RCM.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096433
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3378References:
[1] Bates, B. C., Kundzewicz, Z. W., Wu, S. and Palutikof, J. P., Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, 2008, IPCC Secretariat, Geneva, pp 210.
[2] Jolley, T. J. and Wheater, H. S., A large-scale grid-based hydrological model of the Severn and Thames catchments. Water Environ. J., 1996, 10, 253-262.
[3] Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L., IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
[4] Carter, T. R., Parry, M. L., Harasawa, H. and Nishioka, S., IPCC technical guidelines for assessing climate change impacts and adaptions. IPCC special report to Working Group II of IPCC,1994, University College, London. 1994, pp.59.
[5] Acreman, M. C., The hydrology of the UK: A study of change. 1st edition. London, Routledge, 2000.
[6] Wheater, H. S., Progress in and prospects for fluvial flood modelling. Phil. Trans. R. Lond. A., 2002, 360, 1409-1431.
[7] Huntington, T. G., Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 2006, 319, 83-95.
[8] Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon, S., Stott, P. A. and Nozawa, T., Detection of human influence on twentieth-century precipitation trends. Nature, 2007, 448, 461-465.
[9] Milly, P. C. D., Dunne, K. A. and Vecchia, A. V., Global pattern of trends in streamflow and water availability in a changing climate. Nature, 2005, 438, 347-350.
[10] Wilby, R. L., Beven, K. J. and Reynard, N. S., Climate change and fluvial flood risk in the UK: more of the same? Hydrol. Process., 2008, 22, 2511-2523.
[11] Maurer, E. P., Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California under two emissions scenarios. Clim. Change, 2007, 82, 309-325.
[12] Harrison, G. P., Whittington, W. and Wallace, R. A., Climate change impacts on financial risk in hydropower projects. IEEE Trans. on Power Sys., 2003, 18, 1324-1330.
[13] Christensen, N., Wood, A., Voisin, N., Lettenmaier, D. and Palmer, R., The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim. Change, 2004, 62, 337-363.
[14] Wheater, H. S., Flood hazard and Management a UK perspective. Phil. Trans. of the Royal Soc., 2006, 364, 2135-2145.
[15] Mortsch, L., D. and Quinn, F. H., Climate change scenarios for great lakes basin Ecosystem Studies. Limnol. Oceanogr., 1996, 41, 903-911.
[16] Probst, J. L. and Tardy, Y., Long range streamflow and world continental runoff fluctuations since the beginning of this century. J. Hydrol., 1987, 94, 289-311.
[17] Guetter, A. K. and Georgakakos, K. P., River outflow of the conterminous United States, 1939- 1988. Bull. Am. Meteorol. Soc., 1993, 74, 1873-1891.
[18] Lammers, R. B., Shiklomanov, A. I., Vorosmarty, C. J., Fekete, B. M. and Peterson, B. J., Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res., 2001, 106, 3321-3334.
[19] Mauget, S. A., Multidecadal Regime Shifts in US Streamflow, Precipitation, and Temperature at the End of the Twentieth Century. J. Clim., 2003, 16, 3905-3916.
[20] Labat, D., Godderis, Y., Probst, J. L. and Guyot, J. L., Evidence for global runoff increase related to climate warming. Adv. Water Resour., 2004, 27, 631-642.
[21] Legates, D. R., Lins, H. F. and McCabe, G. J., Comments on Evidence for global runoff increase related to climate warming by Labat et al. Adv. Water Resour., 2005, 28, 1310-1315.
[22] Lettenmaier, D. and Gan, T., Hydrologic Sensitivities of the Sacramento-San Joaquin River Basin, California, to Global Warming. Water Resour. Res., 1990, 26, 69-86.
[23] McCabe Jr, G. J. and Wolock, D. M., Climate change and the detention of trends in annual runoff. Clim. Res., 1997, 8, 129-134.
[24] IPCC (Intergovernmental Panel on Climate Change), Climate models and their evaluation Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change (ed. Solomon, S., et al.), Cambridge University Press, 2007.
[25] Mondal, A., and Mujumdar, P. P., On the basin-scale detection and attribution of human-induced climate change in monsoon precipitation and streamflow. Water Resour. Res., 2012, 48, W10520, doi:10.1029/2011WR011468.
[26] Steinschneider, S., Polebitski, A., Brown, C. and Letcher, B. H., Toward a statistical framework to quantify the uncertainties of hydrologic response under climate change. Water Resour. Res., 2012, 48, W11525, doi:10.1029/2011WR011318.
[27] Peterson, T. C. and Vose, R. S., An overview of the Global Historical Climatology Network temperature database. Bull. Am. Meteorol. Soc., 1997, 78, 2837-2849.
[28] Mitchell, T. D. and Jones, P. D., An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 2005, 25, 693-712.
[29] Kripalani, R. H., Oh J. H., Kulkarni, A., Sabade, S. S., and Chaudhari, H. S., South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 2007, 90, 133–159.
[30] Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. and Xavier, P. K., Increasing trend of extreme rain events over India in a warming environment. Science, 2006, 314, 1442–1445.
[31] Rajeevan, M., Bhate, J. and Jaiswal A. K., Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 2008, 35, L18707, doi:10.1029/2008GL035143.
[32] Ojha, R., Kumar, D. N., Sharma, A., and Mehrotra, R., Assessing Severe Drought and Wet Events over India in a Future Climate Using a Nested Bias-Correction Approach. J. Hydrol. Engg., 2013, 18, 760-772.
[33] Gosain, A. K., Sandhya, R., Srinivasan, R. and Gopal R., N., Climate Change Impact Assessment of water resources of India. Curr. Sci., 2011, 101, 356-371.
[34] Hughes, J., Guttorpi, P. and Charles, S., A non-homogeneous hidden Markov model for precipitation occurrence. Appl. Stat., 1999, 48, 15-30.
[35] Prudhomme, C., Reynard, N. and Crooks, S., Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol. Process., 2002, 16, 1137-1150.
[36] Brands, S., Herrera, S., Fernández, J. and Gutiérrez, J. M., How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Clim. Dynam., 2013, 41, 803-817.
[37] Taylor, K. E., Stouffer, R. J. and Meehl, G. A., An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 2012, 93, 485–498.
[38] Ghosh, S., and Mujumdar, P. P., Climate change impact assessment: Uncertainty modeling with imprecise probability. J. Geophys. Res., 2009, 114, D18113, doi:10.1029/2008JD011648.
[39] Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. and Wilbanks, T. J., The next generation of scenarios for climate change research and assessment. Nature, 2010, 463, 747–756.
[40] Jones, R. G., Murphy, J. M., Noguer, M. and Keen, A. B., Simulation of climate change over Europe using a nested regional-climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxide. Q. J. R. Meteorol. Soc., 1997, 123, 265-292.
[41] Hewitson, B.C. and Crane R.G., Climate downscaling: techniques and application. Clim. Res., 1996, 7, 85-95.
[42] Giorgi, F. and Mearns, L., Approaches to the simulation of regional climate change: A review. Rev. Geophys., 1991, 29, 191-216.
[43] Giorgi, F. and Mearns, L., Introduction to special section: Regional climate modelling revisited. J. Geophys. Res., 1999, 104, 6335-6352.
[44] von Storch, H., Langenberg, H. and Feser, F., A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 2000, 128, 3664-3673.
[45] Christensen, J. H. and Christensen, O. B., A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change, 2007, 81, 7-30.
[46] Buonomo, E., Jones, R., Huntingford, C. and Hannaford, J., On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Quarterly Q. J. R. Meteorol. Soc., 2007, 133, 65–81.
[47] Fowler, H. J., Blenkinsop, S. and Tebaldi, C., Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 2007, 27, 1547-1578.
[48] Rauscher, S. A., Coppola, E., Piani, C. and Giorgi, F., Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim. Dynam., 2010, 35, 685- 711.
[49] Maraun, D., Rust, H. W. and Osborn, T. J., The annual cycle of heavy precipitation across the United Kingdom: a model based on extreme value statistics. Int. J. Climatol., 2010, 29, 1731-1744.
[50] Durman, C. F., Gregory, J. M., Hassell, D. C., Jones, R. G. and Murphy, J. M., A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Q. J. R. Meteorol. Soc., 2001, 127, 1005-1015.
[51] Mujumdar, P. P. and Kumar, D. N., Floods in a changing Climate, Hydrological Modeling, Cambridge University press, 2012.
[52] Frei, C., Scholl, R., Fukutome, S., Schmidli, J. and Vidale, P. L., Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.
[53] Christensen, J., Raisanen, J., Iversen, T., Bjorge, D., Christensen, O. and Rummukainen, M., A synthesis of regional climate change simulations. A Scandinavian perspective. Geophys. Res. Lett., 2001, 28, 1003–1006.
[54] Jenkins, G., Murphy, J., Sexton, D., Lowe, J., Jones, P. and Kilsbu, C., UKCP09 Briefing report. UK Climate projections. 2009, Exeter, UK, Met Office Hadley Centre.
[55] Lenderink, G. and Van Meijgaard, E., Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci., 2008, 1, 511-514.
[56] Fowler, H. J. and Ekstrom, M., Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol., 2009, 29, 385-416.
[57] Bachner, S., Kapala, A. and Simmer, C., Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorol. Z., 2008, 17, 407-420.
[58] Murphy, J. M., Sexton, D. M. H., Jenkins, G. J., Booth, B. B. B., Brown, C. C., Clark, R. T., Collins, M., Harris, G. R., Kendon, E. J., Betts, R. A., Brown, S. J., Boorman, P., Howard, T. P., Humphrey, K. A., McCarthy, M. P., McDonald, R. E., Stephens, A., Wallace, C., Warren, R., Wilby, R. and Wood, R. A., Climate change projections. UK Climate projections, 2009. Exeter, UK.
[59] Chen, C. T. and Knutson, T., On the verification and comparison of extreme rainfall indices from climate models. J. Clim., 2008, 21, 1605- 1621.
[60] Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., Mearns, L. O., Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA), 2004, http://ipcc-ddc.cru.uea.ac.uk/gu-idelines/ StatDown_Guide.pdf
[61] Wilby, R. L., Hassan, H. and Hanaki, K., Statistical downscaling of hydrometeorological variables using general circulation model output, J. Hydrol., 1998, 205, 1–19.
[62] Xu, C., From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geog., 1999, 23, 229- 249.
[63] Wilby, R. L. and Wigley, T. M. L., Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geog., 1997, 21, 530-548.
[64] Zorita, E. and von Storch, H., Analog method as a simple statistical downscaling technique: comparison with more complicated methods. J. Clim.,1999, 12, 2474-2489.
[65] Chandler, R. E. and Wheater, H. S., Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland. Water Resour. Res., 2002, 38, 1192.
[66] Mehrotra, R., and Sharma, A., Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resour. Res., 2010, 46, W07526, doi:10.1029/2009WR008423.
[67] Wilby, R. L., Dawson, C. W. and Barrow, E. M., SDSM - a decision support tool for the assessment of regional climate change impacts. Environ. Modell. Softw., 2002, 17, 147-159.
[68] Chandler, R. E., GLIMCLIM: Generalized Linear Modelling for Daily Climate Time Series (Software and User guide). Research Report No.227, Department of Statistical Science, University College London.
[69] Kilsby, C. G., Jones, P. D., Burton, A., Ford A. C., Fowler, H. J., Harpham, C., James, P., Smith, A. and Wilby R. L., A daily weather generator for use in climate change studies. Environ. Modell. Softw., 2007, 22, 1705–1719.
[70] Wilks, D. S., Multi-site downscaling of daily precipitation with a stochastic weather generator. Clim. Res., 1999, 11, 125- 136.
[71] Korawan, A., Chaleeraktrakoon, C. and Nguyen, V., Modeling and analysis of rainfall processes in the context of climate change for Mekong, Chi and Mun River Basins (Thailand). J. Hydro-Env. Res., 2013, 7, 2-17.
[72] Kannan, S. and Ghosh, S., Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output. Stoch. Environ. Res. Risk Assess., 2011, 25,457-474.
[73] Ghosh, S., SVM‐PGSL coupled approach for statistical downscaling to predict rainfall from GCM output. J. Geophys. Res., 2010, 115, D22102, doi:10.1029/2009JD013548.
[74] Kannan, S. and Ghosh, S., A nonparametric Kernel regression model for downscaling multisite daily precipitation in the Mahanadi basin, Water Resour. Res., 2013, 49, 1360-1385.
[75] Salvi K., Kannan, S. and Ghosh, S., High resolution multisite daily rainfall projections in India using statistical downscaling for climate change impact assessment. J. Geophys. Res., 2013, 118, 3557-3578.
[76] Jha, S. K., Mariethoz, G., Evans, J. P. and McCabe, M. F., Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations. Water Resour. Res., 49, 245-259.
[77] United Nations Framework Convention on Climate Change (UNFCCC). 1992. United Nations Framework Convention on Climate Change: Text. Geneva: UNEP/WMO.