Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)
Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam
Abstract:
Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.
Keywords: Androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089469
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4133References:
[1] Khush, G. S. and G. H. Toenniessen, 1991. Rice Biotechnology. International Rice Research Institute. 6: VII-VIII.
[2] Sopory, S. K. and M. Munshi. 1996. Anther culture, edited by S M Jain, S K Sopory and R E Veilleux, In Vitro Haploid Production in Higher Plants (Kluwer Academic Publishers, Netherlands), pp. 145–176.
[3] Islam, S. M. S. 2010a. The role of drought stress on anther culture of wheat (Triticum aestivum L.). Plant Tissue Cult Biotech. 20: 55-61.
[4] Rukmini, M., G. J. N. Rao. and R. N. Rao. 2013. Effect of cold pretreatment and phytohormones on anther culture efficiency of two Indica rice (Oryza Sativa L.) Hybrids- Ajay and Rajalaxmi. J. Exp. Biol. Agr. Sci., (2): 69-76.
[5] Stöger, E., C Fink, M. Pfosser, and E. Heberle-Bors. 1995. Plant transformation by particle bombardment of embryogenesis pollen. Plant Cell Rep. 14: 273-278.
[6] Jähne, A. and H. Lörz. 1995. Cereal microspore culture. Plant Sci. 109: 1-12.
[7] Guo, Y. D. and S. Pulli. 2000. Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep. 19: 875-880.
[8] Islam, S. M. S. and N. Tuteja (2013) Production of abiotic stress tolerant fertile transgenic plants using androgenesis and genetic transformation methods in cereal crops. In: Tuteja N & Gill SS (Eds.). Crop Improvement Under Adverse Conditions. Springer New York Heidelberg London pp 213-229.
[9] Coumans, M. P. and D. Zhang. 1995. Doubled haploid sunflower (Helianthus annuus) plant production by androgenesis: fact or artifact? Part 2. In vitro isolated microspore culture. Plant Cell, Tiss Org Cult. 41 (3): 203-209.
[10] Ferrie, A. M. R. and K. L. Caswell. 2011. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult. 104: 301-309.
[11] Islam, S. M. S. and N. Tuteja. 2012. Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Science 182: 134-144.
[12] Islam, S. M. S. 2010b. The effect of colchicine pretreatment on isolated microspore culture of wheat (Triticum aestivum L.). Aus J Crop Sci. 4(9): 660-665.
[13] Hoekstra, S., M. H Zijderveld, F. Heidekamp. and F. Mark. 1993. Microspore culture of Hordeum vulgare L.: The influence of density and osmolality. Plant Cell Rep. 12: 661-665.
[14] Shim, Y. S., Pauls K. P. and Kasha, K. 2009. Transformation of isolated barley (Hordeum vulgare L.) microspores: I. The influence of pretreatments and osmotic treatment on the time of DNA synthesis. Genome 52: 166-174.
[15] Köhler, F. and G. Wenzel. 1985. Regeneration of isolated barley microspores in conditioned media and trials to characterize the responsible factor. J Plant Physiol. 121: 181-191.
[16] Wei, Z. M., M. Kyo. and H. Harada. 1986. Callus formation and plant regeneration through direct culture of isolated pollen of Hordeum vulgare cv. Sabarlis. Theor. Appl. Genet. 72: 252-255.
[17] Cistué, L., A. Ziauddin, E. Simion. and K. J. Kasha. 1995. Effects of culture conditions on isolated microspore response of barley cultivar Igri. Plant Cell Tiss Org Cult 42: 163-169.
[18] Cistué L, I. Romgosa, F. Batlle. and B. Echávarri (2009) Improvement in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep. 28(5): 727-735.
[19] Datta, S. K., I. Potrykus, M. Bolik. and G. Wenzel. 1990. Culture of isolated pollen of wheat (Triticum aestivum L.). In: Bajaj YPS (eds) Biotechnology in Agriculture and Forestry, vol. 13, pp 435-447.
[20] Raina, S. K. and S.T. Irfan. 1998. High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Rep. 17: 957-962.
[21] Wenzel, G., F. Hoffmann, I. Potrykus. and E. Thomas. 1975. The separation of viable rye microspores from mixed populations and their development in culture. Mol. Genet. 138: 293-297.
[22] Nägeli, M., J. E. Schmid, P. Stamp. and B. Büter. 1999. Improved formation of regenerable callus in isolated microspore culture of maize: impact of carbohydrates, plating density and time of transfer. Plant Cell Rep. 19: 177-184.
[23] Obert, B., L.A. Szabo, Juditmityko, Annapretova. and B. Barnabás. 2004. Morphological events in cultures of mechanically isolated maize microspores. In Vitro Cell Div Biol-Plant 41: 775-782.
[24] Kunz, C., S. M. S. Islam, J. Berberat, S. O. Peter, B. Büter, P. Stamp. and J. E. Schmid. 2000. Assessment and improvement of wheat microspore derived embryo induction and regeneration. J. Plant Physiol. 156: 190-196.
[25] Islam, S. M. S., M. A. Bari, M. N. Amin. and J. E. Schmid. 2001. In vitro plant regeneration through anther culture of some Bangladeshi wheat varieties. Plant Tissue Cult Biotech. 11(1): 31-39.
[26] Liu, W., Zheng, M. Y., Polle, E. and C. F. Konzak. 2002. Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci., 42: 686-692.
[27] Slama-Ayed, O., De J. Buyser, E. Picard, Y. Trifa. and H. S. Amara. 2010. Effect of pre-treatment on isolated microspores culture ability in durum wheat (Triticum turgidum subsp. Durum Desf.). J. Plant Breed Crop Sci. 2: 30-38.
[28] Ekhveh, M. J., A. Moieni. and M. J. Javaran. 2013. The evaluation of response to isolated microspores culture in some Iranian hexaploid wheat (Triticum aestivum L.) cultivars. J. Agr. Sci. 5: 206-216.
[29] Weber S, F. Ünker. and W. Friedt. 2005. Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breed. 124: 511-513.
[30] Takahira, J., A. Cousin, M. N. Nelson. and W. A. Cowling. 2011. Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell, Tiss Org Cult. 104: 51–59.
[31] Górecka, K., U. Kowalska., D. Krzyżanowska. and W. Kiszezak. 2010. Obtaining carrot (Daucus carota L.) plants in isolated microspore cultures. J Appl Genet. 51: 141-147.
[32] Grewal, R. K., M. Lulsdorf, J. Crosser, S. Ochatt, A. Vandenberg. and T. D. Warkentin. 2009. Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatment. Plant Cell Rep. 28: 1289-1299.
[33] Ali, M. A. and J. K. Jones. 2000. Microspore culture in Corchorus olitorius: effect of growth regulators, temperature and sucrose on callus formation. Indian J Exp Biol. 38(6): 593-597.
[34] Dragosavac, D. C., S. Stevovic. and S. Zdravkovic. 2010. Impact of genotype, age of three and environmental temperature on androgenesis induction of Aesculus hippocastanum L. African J Biotech. 29: 4042-4049.
[35] Ochatt, S., C. Pech, R. Grewal, C. Conreux, M. Lulsdorf. and L. Jacas. 2009. Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol. 166: 1314-1328.
[36] Barany, I., M. P. Gonzalez, B. Fadon, J. Mityko, M. C. Risueno. and P. S. Testillano. 2005. Microspore-derived embryogenesis in pepper (Capsicum annuum L.): subcelluar rearrangements through development. Biol Cell 97(9): 709-22.
[37] Kim, M., I. C. Jang, J. A. Kim, E. J. Park, M. Yoon, and Y. Lee. 2008. Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep. 27: 425-434.
[38] Kim, M., Park, E. J. and Y. Lee. 2013. High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tiss Org. Cult. 112: 191–201.
[39] Islam, S. M. S. 2010c. Effect of embryoids age, size and shape for improvement of regeneration efficiency from microspore-derived embryos in wheat (Triticum aestivum L.) Plant Omics J. 3(5): 149-153.
[40] Olmedilla, A. 2010. Microspore Embryogenesis. In: Pua EC, Davey MR (eds) Plant Developmental Biology- Biotechnological Perspectives. Springer-Verlag Berlin Heidelberg, vol. 2, pp 27-44.
[41] Talebi, R., M. R, Rahemi, H. Arefi, M. Nourozi. and Bagheri, N. 2007. In vitro plant regeneration through anther culture of some Iranian local rice (Oryza sativa L.) cultivars. Pak. J. Bio. Sci. 10(12): 2056-2060.
[42] Khatun, R., Islam, S. M. S., Ara, I., N. Tuteja. and M. A. Bari. 2012. Effect of cold treatment and different media in improving anther culture response in rice (Oryza sativa L) in Bangladesh. Indian J. Biotech. 11: 458-463.
[43] Schmid, J. E. 1990. In vitro production of haploids in Triticum spelta. In: Bajaj YPS (Eds.) Biotechnology in Agriculture and Forestry, vol. 13, pp 363-381.
[44] Lichter, R. 1982. Induction of haploid plants from isolated pollen of Brassica napus. Z. Pflanzenphysiol. 105: 427-434.
[45] Tuvesson, I. K. D. and R. C. V. Öhlund. 1993. Plant regeneration through culture of isolated microspores of Triticum aestivum L. Plant Cell, Tiss Org Cult. 34(2): 163-167.
[46] Joersbo, M., R. B. Jorgensen. and P. Olesen. 1990. Transient electropermeabilization of barley (Hordeum vulgare L.) microspores to propidium iodide. Plant Cell, Tiss Org Cult. 23: 125-129.
[47] Pescitelli, S. M., C. D. Johnson. and J. F. Petolino. 1990. Isolated microspore of maize: Effect of isolation technique, reduced temperature, and sucrose level. Plant Cell Rep. 8: 628-631.
[48] Olsen, F. L. 1991. Isolation and cultivation of embryogenic microspores from barley (Hodeum vulgare L.). Hereditas 115: 255-266The effects of ammonium nitrate, glutamine and asparagine as nitrogen sources. Carlsberg Res. Commun. 52: 393-404.
[49] Gustafson, V. D., P. S. Baenziger, M. S. Wright, W. W. Stroup. and Y. Yen. 1995. Isolated wheat microspore culture. Plant Cell, Tiss Org. Cult. 42: 207-213.
[50] Bedinger, P. A. and M. D. Edgerton. 1990. Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol. 92: 474-479.
[51] Mejza, S. J., V. Morgant., D. E. DiBona. and J. R. Wong. 1993. Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep. 12: 149-153.