Search results for: Admissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15

Search results for: Admissions

15 A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions

Authors: Manisha Rathi, Thierry Chaussalet

Abstract:

Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.

Keywords: Admission, Fuzzy, Regression, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
14 The Impact of COVID-19 Pandemic on Acute Urology Admissions in a Busy District General Hospital in the UK

Authors: D. Bheenick, M. Young, M. Elmussareh, A. Ali

Abstract:

Coronavirus disease 2019 (COVID-19) has had unprecedented effects on the healthcare system in the UK. The pandemic has impacted every service within secondary care, including urology. Our objective is to determine how COVID-19 has influenced acute urology admissions in a busy district general hospital in the UK. To conduct the study, retrospective data of patients presenting acutely to the urology department were collected between January 13 to March 22, 2020 (pre-lockdown period) and March 23 to May 31, 2020 (lockdown period). The nature of referrals, types of admission encountered, and management required in accordance with the new set of protocols established during the lockdown period were analysed and compared to the same data prior to UK lockdown. Included in the study were 1092 patients. The results show that an overall reduction of 32.5% was seen in the total number of admissions. A marked decrease was seen in non-urological pathology as compared to other categories. Urolithiasis showed the highest proportional increase. Treatment varied proportionately to the diagnosis, with conservative management accounting for the most likely treatment during lockdown. However, the proportion of patients requiring interventions during the lockdown period increased overall. No comparative differences were observed during the two periods in terms of source of referral, length of stay and patient age. The results of the study concluded that the admission rate showed a decrease, with no significant difference in the nature and timing of presentation. Our department was able to continue providing effective management to patients presenting acutely during the COVID-19 outbreak.

Keywords: COVID-19, lockdown, admissions, urology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
13 A Discrete Event Simulation Model to Manage Bed Usage for Non-Elective Admissions in a Geriatric Medicine Speciality

Authors: Muhammed Ordu, Eren Demir, Chris Tofallis

Abstract:

Over the past decade, the non-elective admissions in the UK have increased significantly. Taking into account limited resources (i.e. beds), the related service managers are obliged to manage their resources effectively due to the non-elective admissions which are mostly admitted to inpatient specialities via A&E departments. Geriatric medicine is one of specialities that have long length of stay for the non-elective admissions. This study aims to develop a discrete event simulation model to understand how possible increases on non-elective demand over the next 12 months affect the bed occupancy rate and to determine required number of beds in a geriatric medicine speciality in a UK hospital. In our validated simulation model, we take into account observed frequency distributions which are derived from a big data covering the period April, 2009 to January, 2013, for the non-elective admission and the length of stay. An experimental analysis, which consists of 16 experiments, is carried out to better understand possible effects of case studies and scenarios related to increase on demand and number of bed. As a result, the speciality does not achieve the target level in the base model although the bed occupancy rate decreases from 125.94% to 96.41% by increasing the number of beds by 30%. In addition, the number of required beds is more than the number of beds considered in the scenario analysis in order to meet the bed requirement. This paper sheds light on bed management for service managers in geriatric medicine specialities.

Keywords: Bed management, bed occupancy rate, discrete event simulation, geriatric medicine, non-elective admission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
12 Using Copulas to Measure Association between Air Pollution and Respiratory Diseases

Authors: Snezhana P. Kostova, Krassi V. Rumchev, Todor Vlaev, Silviya B. Popova

Abstract:

Air pollution is still considered as one of the major environmental and health issues. There is enough research evidence to show a strong relationship between exposure to air contaminants and respiratory illnesses among children and adults. In this paper we used the Copula approach to study a potential relationship between selected air pollutants (PM10 and NO2) and hospital admissions for respiratory diseases. Kendall-s tau and Spearman-s rho rank correlation coefficients are calculated and used in Copula method. This paper demonstrates that copulas can be used to provide additional information as a measure of an association when compared to the standard correlation coefficients. The results find a significant correlation between the selected air pollutants and hospital admissions for most of the selected respiratory illnesses.

Keywords: Air pollution, Copula, Respiratory Health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
11 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all programs of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.

Keywords: Admission Process Model, Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
10 Improving Patients Discharge Process in Hospitals by using Six Sigma Approach

Authors: Mahmoud A. El-Banna

Abstract:

The need to increase the efficiency of health care systems is becoming an obligation, and one of area of improvement is the discharge process. The objective of this work is to minimize the patients discharge time (for insured patients) to be less than 50 minutes by using six sigma approach, this improvement will also: lead to an increase in customer satisfaction, increase the number of admissions and turnover on the rooms, increase hospital profitability.Three different departments were considered in this study: Female, Male, and Paediatrics. Six Sigma approach coupled with simulation has been applied to reduce the patients discharge time for pediatrics, female, and male departments at hospital. Upon applying these recommendations at hospital: 60%, 80%, and 22% of insured female, male, and pediatrics patients respectively will have discharge time less than the upper specification time i.e. 50 min.

Keywords: Discharge Time, Healthcare, Hospitals, Patients, Process Improvement, Six Sigma, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4743
9 Poisoning Admission in Children Hospital in Benghazi-Libya, Three Years Review of Medical Record

Authors: Mudafara S Bengleil

Abstract:

Estimation of the magnitude and causes of poisoning was the objective of the current study. A retrospective study of medical records of all poisoning children admitted to Benghazi Children Hospital in Libya from January 2008 up to December 2010. Number of children admitted was 244; the age ranged from less than one to 13 years old. Most of cases were admitted with mild symptom and the majority of them were boys. Only few cases admitted to intensive care unit and there was no mortality recorded through the period of study. Age group 1 to 3 years (50.8%) had the highest frequency of admission and the peak of admission was during summer. The most common cause of admission was due to ingestion of medication (53.69%), House hold product exposure (26.64%) was the second causes of admission while, 19.67% of admissions were due to Food poisoning. Almost all admitted cases were accidental and medicines were the most consumed substances in addition, improper storage of toxic agents were the first risk factor of poisoning. Present results indicated that, children poisoning seems to be a common pediatric care problem which need to control and prevent.

Keywords: Children, hospital, poisoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
8 Risk Assessment of Particulate Matter (PM10) in Makkah, Saudi Arabia

Authors: Turki M. Habeebullah, Atef M. F. Mohammed, Essam A. Morsy

Abstract:

In recent decades, particulate matter (PM10) have received much attention due to its potential adverse health impact and the subsequent need to better control or regulate these pollutants. The aim of this paper is focused on study risk assessment of PM10 in four different districts (Shebikah, Masfalah, Aziziyah, Awali) in Makkah, Saudi Arabia during the period from 1 Ramadan 1434 AH - 27 Safar 1435 AH. Samples were collected by using Low Volume Sampler (LVS Low Volume Sampler) device and filtration method for estimating the total concentration of PM10. The study indicated that the mean PM10 concentrations were 254.6 (186.1 - 343.2) μg/m3 in Shebikah, 184.9 (145.6 - 271.4) μg/m3 in Masfalah, 162.4 (92.4-253.8) μg/m3 in Aziziyah, and 56.0 (44.5 - 119.8) μg/m3 in Awali. These values did not exceed the permissible limits in PME (340 μg/m3 as daily average). Furthermore, health assessment is carried out using AirQ2.2.3 model to estimate the number of hospital admissions due to respiratory diseases. The cumulative number of cases per 100,000 were 1534 (18-3050 case), which lower than that recorded in the United States, Malaysia. The concentration response coefficient was 0.49 (95% CI 0.05 - 0.70) per 10 μg/m3 increase of PM10.

Keywords: Air pollution, Respiratory diseases, AirQ2.2.3, Makkah.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
7 Modelling Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) Outbreak Using Poisson and Negative Binomial Model

Authors: W. Y. Wan Fairos, W. H. Wan Azaki, L. Mohamad Alias, Y. Bee Wah

Abstract:

Dengue fever has become a major concern for health authorities all over the world particularly in the tropical countries. These countries, in particular are experiencing the most worrying outbreak of dengue fever (DF) and dengue haemorrhagic fever (DHF). The DF and DHF epidemics, thus, have become the main causes of hospital admissions and deaths in Malaysia. This paper, therefore, attempts to examine the environmental factors that may influence the recent dengue outbreak. The aim of this study is twofold, firstly is to establish a statistical model to describe the relationship between the number of dengue cases and a range of explanatory variables and secondly, to identify the lag operator for explanatory variables which affect the dengue incidence the most. The explanatory variables involved include the level of cloud cover, percentage of relative humidity, amount of rainfall, maximum temperature, minimum temperature and wind speed. The Poisson and Negative Binomial regression analyses were used in this study. The results of the analyses on the 915 observations (daily data taken from July 2006 to Dec 2008), reveal that the climatic factors comprising of daily temperature and wind speed were found to significantly influence the incidence of dengue fever after 2 and 3 weeks of their occurrences. The effect of humidity, on the other hand, appears to be significant only after 2 weeks.

Keywords: Dengue Fever, Dengue Hemorrhagic Fever, Negative Binomial Regression model, Poisson Regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
6 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: Admissions, algorithms, cloud computing, differentiation, fog computing, leveling, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
5 Use of Multiple Linear Regressions to Evaluate the Influence of O3 and PM10 on Biological Pollutants

Authors: S. I. V. Sousa, F.G. Martins, M. C. Pereira, M. C. M. Alvim-Ferraz, H. Ribeiro, M. Oliveira, I. Abreu

Abstract:

Exposure to ambient air pollution has been linked to a number of health outcomes, starting from modest transient changes in the respiratory tract and impaired pulmonary function, continuing to restrict activity/reduce performance and to the increase emergency rooms visits, hospital admissions or mortality. The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, fungal spores and pollen. Considering the potential relevance of crossed effects of nonbiological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants (O3 and PM10) and meteorological parameters on the concentrations of pollen and fungal spores using multiple linear regressions. The data considered in this study were collected in Oporto which is the second largest Portuguese city, located in the North. Daily mean of O3, PM10, pollen and fungal spore concentrations, temperature, relative humidity, precipitation, wind velocity, pollen and fungal spore concentrations, for 2003, 2004 and 2005 were considered. Results showed that the 90th percentile of the adjusted coefficient of determination, P90 (R2aj), of the multiple regressions varied from 0.613 to 0.916 for pollen and from 0.275 to 0.512 for fungal spores. O3 and PM10 showed to have some influence on the biological pollutants. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations. Relative humidity also showed to have some influence on the fungal spore dispersion. Nevertheless, the models for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant can not be, even so, consistent enough.

Keywords: Air pollutants, meteorological parameters, biologicalpollutants, multiple linear correlations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
4 CAGE Questionnaire as a Screening Tool for Hazardous Drinking in an Acute Admissions Ward: Frequency of Application and Comparison with AUDIT-C Questionnaire

Authors: Ammar Ayad Issa Al-Rifaie, Zuhreya Muazu, Maysam Ali Abdulwahid, Dermot Gleeson

Abstract:

The aim of this audit was to examine the efficiency of alcohol history documentation and screening for hazardous drinkers at the Medical Admission Unit (MAU) of Northern General Hospital (NGH), Sheffield, to identify any potential for enhancing clinical practice. Data were collected from medical clerking sheets, ICE system and directly from 82 patients by three junior medical doctors using both CAGE questionnaire and AUDIT-C tool for newly admitted patients to MAU in NGH, in the period between January and March 2015. Alcohol consumption was documented in around two-third of the patient sample and this was documented fairly accurately by health care professionals. Some used subjective words such as 'social drinking' in the alcohol units’ section of the history. CAGE questionnaire was applied to only four patients and none of the patients had documented advice, education or referral to an alcohol liaison team. AUDIT-C tool had identified 30.4%, while CAGE 10.9%, of patients admitted to the NGH MAU as hazardous drinkers. The amount of alcohol the patient consumes positively correlated with the score of AUDIT-C (Pearson correlation 0.83). Re-audit is planned to be carried out after integrating AUDIT-C tool as labels in the notes and presenting a brief teaching session to junior doctors. Alcohol misuse screening is not adequately undertaken and no appropriate action is being offered to hazardous drinkers. CAGE questionnaire is poorly applied to patients and when satisfactory and adequately used has low sensitivity to detect hazardous drinkers in comparison with AUDIT-C tool. Re-audit of alcohol screening practice after introducing AUDIT-C tool in clerking sheets (as labels) is required to compare the findings and conclude the audit cycle.

Keywords: Alcohol screening, AUDIT-C, CAGE, Hazardous drinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3 Exploring the Perspective of Service Quality in mHealth Services during the COVID-19 Pandemic

Authors: Wan-I Lee, Nelio Mendoza Figueredo

Abstract:

The impact of COVID-19 has a significant effect on all sectors of society globally. Health information technology (HIT) has become an effective health strategy in this age of distancing. In this regard, Mobile Health (mHealth) plays a critical role in managing patient and provider workflows during the COVID-19 pandemic. Therefore, the users' perception of service quality about mHealth services plays a significant role in shaping confidence and subsequent behaviors regarding the mHealth users' intention of use. This study's objective was to explore levels of user attributes analyzed by a qualitative method of how health practitioners and patients are satisfied or dissatisfied with using mHealth services; and analyzed the users' intention in the context of Taiwan during the COVID-19 pandemic. This research explores the experienced usability of a mHealth services during the Covid-19 pandemic. This study uses qualitative methods that include in-depth and semi-structured interviews that investigate participants' perceptions and experiences and the meanings they attribute to them. The five cases consisted of health practitioners, clinic staff, and patients' experiences using mHealth services. This study encourages participants to discuss issues related to the research question by asking open-ended questions, usually in one-to-one interviews. The findings show the positive and negative attributes of mHealth service quality. Hence, the significant importance of patients' and health practitioners' issues on several dimensions of perceived service quality is system quality, information quality, and interaction quality. A concept map for perceptions regards to emergency uses' intention of mHealth services process is depicted. The findings revealed that users pay more attention to "Medical care", "ease of use" and "utilitarian benefits" and have less importance for "Admissions and Convenience" and "Social influence". To improve mHealth services, the mHealth providers and health practitioners should better manage users' experiences to enhance mHealth services. This research contributes to the understanding of service quality issues in mHealth services during the COVID-19 pandemic.

Keywords: COVID-19, mobile health, mHealth, service quality, use intention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
2 Sickle Cell Disease: Review of Managements in Pregnancy and the Outcome in Ampang Hospital, Selangor

Authors: Z. Nurzaireena, K. Azalea, T. Azirawaty, S. Jameela, G. Muralitharan

Abstract:

The aim of this study is the review of the management practices of sickle cell disease patients during pregnancy, as well as the maternal and neonatal outcome at Ampang Hospital, Selangor. The study consisted of a review of pregnant patients with sickle cell disease under follow up at the Hematology Clinic, Ampang Hospital over the last seven years to assess their management and maternal-fetal outcome. The results of the review show that Ampang Hospital is considered the public hematology centre for sickle cell disease and had successfully managed three pregnancies throughout the last seven years. Patients’ presentations, managements and maternal-fetal outcome were compared and reviewed for academic improvements. All three patients were seen very early in their pregnancy and had been given a regime of folic acid, antibiotics and thrombo-prophylactic drugs. Close monitoring of maternal and fetal well being was done by the hematologists and obstetricians. Among the patients, there were multiple admissions during the pregnancy for either a painful sickle cell bone crisis, haemolysis following an infection and anemia requiring phenotype- matched blood and exchange transfusions. Broad spectrum antibiotics coverage during and infection, hydration, pain management and venous-thrombolism prophylaxis were mandatory. The pregnancies managed to reach near term in the third trimester but all required emergency caesarean section for obstetric indications. All pregnancies resulted in live births with good fetal outcome. During post partum all were nursed closely in the high dependency units for further complications and were discharged well. Post partum follow up and contraception counseling was comprehensively given for future pregnancies. Sickle cell disease is uncommonly seen in the East, especially in the South East Asian region, yet more cases are seen in the current decade due to improved medical expertise and advance medical laboratory technologies. Pregnancy itself is a risk factor for sickle cell patients as increased thrombosis event and risk of infections can lead to multiple crisis, haemolysis, anemia and vaso-occlusive complications including eclampsia, cerebrovasular accidents and acute bone pain. Patients mostly require multiple blood product transfusions thus phenotype-matched blood is required to reduce the risk of alloimmunozation. Emphasizing the risks and complications in preconception counseling and establishing an ultimate pregnancy plan would probably reduce the risk of morbidity and mortality to the mother and unborn child. Early management for risk of infection, thromboembolic events and adequate hydration is mandatory. A holistic approach involving multidisciplinary team care between the hematologist, obstetricians, anesthetist, neonatologist and close nursing care for both mother and baby would ensure the best outcome. In conclusion, sickle cell disease by itself is a high risk medical condition and pregnancy would further amplify the risk. Thus, close monitoring with combine multidisciplinary care, counseling and educating the patients are crucial in achieving the safe outcome.

Keywords: Anemia, haemoglobinopathies, pregnancy, sickle cell disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
1 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland

Authors: Sotirios Raptis

Abstract:

Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found  that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.

Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460