Search results for: Quantum Computer Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4704

Search results for: Quantum Computer Simulation

4074 Experimental and Numerical Simulation of Fire in a Scaled Underground Station

Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler

Abstract:

The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.

Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
4073 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control

Authors: T. Hussein

Abstract:

In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.

Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3726
4072 Study on Numerical Simulation Applied to Moisture Buffering Design Method – The Case Study of Pine Wood in a Single Zone Residential Unit in Taiwan

Authors: Y.C. Yeh, Y.S. Tsay, C.M. Chiang

Abstract:

A good green building design project, designers should consider not only energy consumption, but also healthy and comfortable needs of inhabitants. In recent years, the Taiwan government paid attentions on both carbon reduction and indoor air quality issues, which be presented in the legislation of Building Codes and other regulations. Taiwan located in hot and humid climates, dampness in buildings leads to significant microbial pollution and building damage. This means that the high temperature and humidity present a serious indoor air quality issue. The interactions between vapor transfers and energy fluxes are essential for the whole building Heat Air and Moisture (HAM) response. However, a simulation tool with short calculation time, property accuracy and interface is needed for practical building design processes. In this research, we consider the vapor transfer phenomenon of building materials as well as temperature and humidity and energy consumption in a building space. The simulation bases on the EMPD method, which was performed by EnergyPlus, a simulation tool developed by DOE, to simulate the indoor moisture variation in a one-zone residential unit based on the Effective Moisture Penetration Depth Method, which is more suitable for practical building design processes.

Keywords: Effective Moisture Penetration Depth Method, Moisture Buffering Effect, Interior Material, Green Material, EnergyPlus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
4071 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: Terrestrial-satellite networks, latency, on-orbit satellite payload, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
4070 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

Authors: Hock Chuan, Lim

Abstract:

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Keywords: Blended learning, network science, social learning, social network analysis, study environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634
4069 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: Graphene, single ion transport, Coulomb blockade, fluidic computer, super capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
4068 Investigation of the Aerodynamic Characters of Ducted Fan System

Authors: Wang Bo , Guo Zheng , Wang Peng , Shan Shangqiu , Hou Zhongxi

Abstract:

This paper investigates the aerodynamic characters of a model ducted fan system, analyses the basic principle of the effect of thrust promotion and torque reduction, discovers the relationship between the revolutions per minute(RPM) of the fan and the characters of thrust, as well as system torque. Firstly a model ducted fan has been designed and manufactured according to the specific structure of flow field, then CFD simulation has been carried out to analyze such aerodynamics, finally bench tests have been used to validate the simulation results and system configuration.

Keywords: ducted fan, free vortex flow, stator blade, screw torque, thrust increase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4375
4067 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, Breaking waves, Boundary layer, Wigley hull, Volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3526
4066 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280
4065 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral

Abstract:

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Keywords: Object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081
4064 Achieving High Availability by Implementing Beowulf Cluster

Authors: A.F.A. Abidin, N.S.M. Usop

Abstract:

A computer cluster is a group of tightly coupled computers that work together closely so that in many respects they can be viewed as though they are a single computer. The components of a cluster are commonly, but not always, connected to each other through fast local area networks. Clusters are usually deployed to improve performance and/or availability over that provided by a single computer, while typically being much more cost-effective than single computers of comparable speed or availability. This paper proposed the way to implement the Beowulf Cluster in order to achieve high performance as well as high availability.

Keywords: Beowulf Cluster, grid computing, GridMPI, MPICH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
4063 Simulation of Inverter Fed Induction Motor Drive with LabVIEW

Authors: R. Gunabalan, S. Immanuel Prabakaran, J. Reegan, S. Ganesh

Abstract:

This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated.

Keywords: Induction motor, LabVIEW, State model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8538
4062 Using Visual Technologies to Promote Excellence in Computer Science Education

Authors: Carol B. Collins, M. H. N Tabrizi

Abstract:

The purposes of this paper are to (1) promote excellence in computer science by suggesting a cohesive innovative approach to fill well documented deficiencies in current computer science education, (2) justify (using the authors' and others anecdotal evidence from both the classroom and the real world) why this approach holds great potential to successfully eliminate the deficiencies, (3) invite other professionals to join the authors in proof of concept research. The authors' experiences, though anecdotal, strongly suggest that a new approach involving visual modeling technologies should allow computer science programs to retain a greater percentage of prospective and declared majors as students become more engaged learners, more successful problem-solvers, and better prepared as programmers. In addition, the graduates of such computer science programs will make greater contributions to the profession as skilled problem-solvers. Instead of wearily rememorizing code as they move to the next course, students will have the problem-solving skills to think and work in more sophisticated and creative ways.

Keywords: Algorithms, CASE, UML, Problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
4061 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3

Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
4060 Scalable Cloud-Based LEO Satellite Constellation Simulator

Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi

Abstract:

Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based network simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.

Keywords: LEO, Cloud Computing, Constellation, Satellite, Network Simulation, Netfilter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
4059 Optimization Approaches for a Complex Dairy Farm Simulation Model

Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu

Abstract:

This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.

Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
4058 MATLAB/SIMULINK Based Model of Single- Machine Infinite-Bus with TCSC for Stability Studies and Tuning Employing GA

Authors: Sidhartha Panda, Narayana Prasad Padhy

Abstract:

With constraints on data availability and for study of power system stability it is adequate to model the synchronous generator with field circuit and one equivalent damper on q-axis known as the model 1.1. This paper presents a systematic procedure for modelling and simulation of a single-machine infinite-bus power system installed with a thyristor controlled series compensator (TCSC) where the synchronous generator is represented by model 1.1, so that impact of TCSC on power system stability can be more reasonably evaluated. The model of the example power system is developed using MATLAB/SIMULINK which can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, the parameters of the TCSC controller are optimized using genetic algorithm. The non-linear simulation results are presented to validate the effectiveness of the proposed approach.

Keywords: Genetic algorithm, MATLAB/SIMULINK, modelling and simulation, power system stability, single-machineinfinite-bus power system, thyristor controlled series compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16472
4057 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan

Authors: Emad A. Ahmed

Abstract:

Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behavior of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.

Keywords: Electron mobility, relaxation time, GaN, Scattering, Computer software, computation physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3838
4056 Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Authors: Ruediger Schmidt, Thang Duy Vu

Abstract:

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.

Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
4055 Effect of Inertia on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation

Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski

Abstract:

The dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. In this study, the fractal dimension of the line is found for different cases of heavy particles inertia (different Stokes numbers) in the absence of the particle gravity with a comparison with the fractal dimension obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle inertia affect the fractal dimension of a line released in a turbulent flow for Stokes numbers 0.02 < St < 2. At the beginning for small times, most of the different cases are not affected by the inertia until a certain time, the particle response time τa, with larger time as the particles inertia increases, the fractal dimension of the line increases owing to the particles becoming more sensitive to the small scales which cause the change in the line shape during its journey.

Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
4054 The Effect of Computer-Mediated vs. Face-to-Face Instruction on L2 Pragmatics: A Meta-Analysis

Authors: Marziyeh Yousefi, Hossein Nassaji

Abstract:

This paper reports the results of a meta-analysis of studies on the effects of instruction mode on learning second language pragmatics during the last decade (from 2006 to 2016). After establishing related inclusion/ exclusion criteria, 39 published studies were retrieved and included in the present meta-analysis. Studies were later coded for face-to-face and computer-assisted mode of instruction. Statistical procedures were applied to obtain effect sizes. It was found that Computer-Assisted-Language-Learning studies generated larger effects than Face-to-Face instruction.

Keywords: Meta-analysis, effect size, pragmatics, computer-assisted language learnin, face-to-face instruction, comprehensive meta-analysis software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
4053 Simulation Studies on Concentrating Type Solar Cookers

Authors: V. K. Krishnan, T. Balusamy

Abstract:

A solar dish collector has been designed, fabricated and tested for its performance on 10-03-2015 in Salem, Tamilnadu, India. The experiments on cooking vessels of coated and un-coated with 5 Liters capacity have been used for cooking Rice. The results are shown in graphs. The solar cooker is always capable of cooking food within the expected length of time and based on the solar radiation levels. With minimum cooking power, the coated pressure cooker of 5 Liters capacity cooks the food at faster manner. This is due to the conductivity of the coating material provided in the cooker.

Keywords: Solar cooker, solar concentrator type, thermal performance, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
4052 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
4051 Virtual Assembly in a Semi-Immersive Environment

Authors: Emad S. Abouel Nasr, Abdulaziz M. El-Tamimi, Mustufa H. Abidi, Abdulrahman M. Al-Ahmari

Abstract:

Virtual Assembly (VA) is one of the key technologies in advanced manufacturing field. It is a promising application of virtual reality in design and manufacturing field. It has drawn much interest from industries and research institutes in the last two decades. This paper describes a process for integrating an interactive Virtual Reality-based assembly simulation of a digital mockup with the CAD/CAM infrastructure. The necessary hardware and software preconditions for the process are explained so that it can easily be adopted by non VR experts. The article outlines how assembly simulation can improve the CAD/CAM procedures and structures; how CAD model preparations have to be carried out and which virtual environment requirements have to be fulfilled. The issue of data transfer is also explained in the paper. The other challenges and requirements like anti-aliasing and collision detection have also been explained. Finally, a VA simulation has been carried out for a ball valve assembly and a car door assembly with the help of Vizard virtual reality toolkit in a semi-immersive environment and their performance analysis has been done on different workstations to evaluate the importance of graphical processing unit (GPU) in the field of VA.

Keywords: Collision Detection, Graphical Processing Unit (GPU), Virtual Reality (VR), Virtual Assembly (VA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2881
4050 Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids

Authors: Saqib Mahmood, Rolf Radespiel

Abstract:

This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx .

Keywords: VGJ, Chimera Grid, DES, RANS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
4049 Preoperative to Intraoperative Space Registration for Management of Head Injuries

Authors: M. Gooroochurn, M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

A registration framework for image-guided robotic surgery is proposed for three emergency neurosurgical procedures, namely Intracranial Pressure (ICP) Monitoring, External Ventricular Drainage (EVD) and evacuation of a Chronic Subdural Haematoma (CSDH). The registration paradigm uses CT and white light as modalities. This paper presents two simulation studies for a preliminary evaluation of the registration protocol: (1) The loci of the Target Registration Error (TRE) in the patient-s axial, coronal and sagittal views were simulated based on a Fiducial Localisation Error (FLE) of 5 mm and (2) Simulation of the actual framework using projected views from a surface rendered CT model to represent white light images of the patient. Craniofacial features were employed as the registration basis to map the CT space onto the simulated intraoperative space. Photogrammetry experiments on an artificial skull were also performed to benchmark the results obtained from the second simulation. The results of both simulations show that the proposed protocol can provide a 5mm accuracy for these neurosurgical procedures.

Keywords: Image-guided Surgery, Multimodality Registration, Photogrammetry, Preoperative to Intraoperative Registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
4048 A Virtual Simulation Environment for a Design and Verification of a GPGPU

Authors: Kwang Y. Lee, Tae R. Park, Jae C. Kwak, Yong S. Koo

Abstract:

When a small H/W IP is designed, we can develop an appropriate verification environment by observing the simulated signal waves, or using the serial test vectors for the fixed output. In the case of design and verification of a massive parallel processor with multiple IPs, it-s difficult to make a verification system with existing common verification environment, and to verify each partial IP. A TestDrive verification environment can build easy and reliable verification system that can produce highly intuitive results by applying Modelsim and SystemVerilog-s DPI. It shows many advantages, for example a high-level design of a GPGPU processor design can be migrate to FPGA board immediately.

Keywords: Virtual Simulation, Verification, IP Design, GPGPU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
4047 Realistic Simulation Methodology in Brazil’s New Medical Education Curriculum: Potentialities

Authors: Cleto J. Sauer Jr

Abstract:

Introduction: Brazil’s new national curriculum guidelines (NCG) for medical education were published in 2014, presenting active learning methodologies as a cornerstone. Simulation was initially applied for aviation pilots’ training and is currently applied in health sciences. The high-fidelity simulator replicates human body anatomy in detail, also reproducing physiological functions and its use is increasing in medical schools. Realistic Simulation (RS) has pedagogical aspects that are aligned with Brazil’s NCG teaching concepts. The main objective of this study is to carry on a narrative review on RS’s aspects that are aligned with Brazil’s new NCG teaching concepts. Methodology: A narrative review was conducted, with search in three databases (PubMed, Embase and BVS) of studies published between 2010 and 2020. Results: After systematized search, 49 studies were selected and divided into four thematic groups. RS is aligned with new Brazilian medical curriculum as it is an active learning methodology, providing greater patient safety, uniform teaching, and student's emotional skills enhancement. RS is based on reflective learning, a teaching concept developed for adult’s education. Conclusion: RS is a methodology aligned with NCG teaching concepts and has potential to assist in the implementation of new Brazilian medical school’s curriculum. It is an immersive and interactive methodology, which provides reflective learning in a safe environment for students and patients.

Keywords: Curriculum, high-fidelity simulator, medical education, realistic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
4046 Study Forecast Indoor Acoustics. A Case Study: the Auditorium Theatre-Hotel “Casa Tra Noi“

Authors: D. Germanò, D. Plutino, G. Cannistraro

Abstract:

The theatre-auditorium under investigation following the highly reflective characteristics of materials used in it (marble, painted wood, smooth plaster, etc), architectural and structural features of the Protocol and its intended use (very multifunctional: Auditorium, theatre, cinema, musicals, conference room) from the analysis of the statement of fact made by the acoustic simulation software Ramsete and supported by data obtained through a campaign of acoustic measurements of the state of fact made on the spot by a Fonomet Svantek model SVAN 957, appears to be acoustically inadequate. After the completion of the 3D model according to the specifications necessary software used forecast in order to be recognized by him, have made three simulations, acoustic simulation of the state of and acoustic simulation of two design solutions. Improved noise characteristics found in the first design solution, compared to the state in fact consists therefore in lowering Reverberation Time that you turn most desirable value, while the Indicators of Clarity, the Baricentric Time, the Lateral Efficiency, Ratio of Low Tmedia BR and defined the Speech Intelligibility improved significantly. Improved noise characteristics found instead in the second design solution, as compared to first design solution, is finally mostly in a more uniform distribution of Leq and in lowering Reverberation Time that you turn the optimum values. Indicators of Clarity, and the Lateral Efficiency improve further but at the expense of a value slightly worse than the BR. Slightly vary the remaining indices.

Keywords: Indoor, Acoustic, Acoustic simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4171
4045 E-Learning Methodology Development using Modeling

Authors: Sarma Cakula, Maija Sedleniece

Abstract:

Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.

Keywords: E-learning, modeling, E-learning methods development, personal knowledge management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961