
Discrete Wavelet Transform Decomposition Level
Determination Exploiting Sparseness Measurement

Abstract—Discrete wavelet transform (DWT) has been widely
adopted in biomedical signal processing for denoising, compression
and so on. Choosing a suitable decomposition level (DL) in DWT
is of paramount importance to its performance. In this paper, we
propose to exploit sparseness of the transformed signals to determine
the appropriate DL. Simulation results have shown that the sparseness
of transformed signals after DWT increases with the increasing
DLs. Additional Monte-Carlo simulation results have verified the
effectiveness of sparseness measure in determining the DL.
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I. INTRODUCTION

T Ime series analysis has generated significant interest
in audio, speech, image as well as biomedical signal

processing for the purpose of identifying the various char-
acteristics of the variable studied. Typical approaches include
filtering, Fourier transform (FT), wavelet transform (WT) and
so on [1]. These transformations aim at revealing hidden
information that is not readily available in the raw data. The
FT is probably one of the most popular transformations for
obtaining the frequency component of the target signal. How-
ever, the main drawback of FT is that it can only provides the
frequency information, which means that the time-frequency
information cannot been seen at the same time. As most
of the signals dealt in real applications are not stationary,
we need to know at what time the frequency components
occur [2]. One possible solution is to adopt short-time Fourier
transform (STFT) which analyzes only a small section of
the signal at a time. Effectively, the windowing technique is
explored by STFT and each windowed signal is assumed to be
stationary. However, STFT encounters the problem of dilemma
of resolution, which means that a narrow window will produce
poor frequency resolution while a wide window will result in
poor time resolution.

An alternative approach to STFT is WT which analyzes
the signal at different frequencies with different resolutions.
The advantage of using WT is that it can provide good time
resolution and relatively poor frequency resolution at high
frequencies while good frequency resolution and poor time
resolution at low frequencies. This important characteristic is
useful as most natural signals, such as electrocardiography
(ECG) and electroencephalography (EEG) signals, have low
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Fig. 1. Illustration of a two-level DWT process.

frequency content spread over long duration and high fre-
quency content for short durations [2]. For these reasons, dis-
crete WT (DWT) has drawn intensive attention in biomedical
signal processing, for example, in ECG [3]. In general, ECG
signals have unique P-QRS-T complex waveforms and it is
much more significant than other biological signals [4]. It is
possible to diagnose many cardiac diseases by visualizing the
variations of its morphological characteristics [4]. However,
the presence of noise, such as muscle noise, baseline artifacts,
the 50 Hz power-line interface, will degrade the accuracy of
such diagnosation [5][6].

Not only DWT can be applied to extract the time-frequency
information, it also can be exploited for noise suppressing. The
main idea of noise reduction via DWT is to compare the DWT
coefficients with a pre-determined threshold to determine if
it can be seen as a desirable part of the original signal [7].
This approach is well known as wavelet thresholding, which
can be further categorized into hard and soft thresholding.
In hard thresholding, a DWT coefficient is kept unchanged
if its absolute value is greater or equal than the threshold;
otherwise, it is set to zero [7]. The soft thresholding technique
not only zeros the small DWT coefficients, it also shrinks the
coefficients with large amplitudes towards zero [8][9].

The performance of wavelet thresholding depends largely
on the following four factors [10], the choice of wavelet type,
decomposition level (DL), threshold estimation and threshold-
ing rules. It is also important to note that the threshold value is
dependent on the DL in DWT. Therefore, it is often regarded as
level-dependent threshold [7]. As a result, to obtain a suitable
DL in DWT becomes a crucial issue. In [10], the authors
proposed to measure the entropy of transformed signal and
let the decomposing process stop when the resultant entropy
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becomes significantly different from that of an artificially
generated noise series. The main drawback of this method is
that it requires prior information of the distribution model of
the noise which is generally unknown in practice.

In this work, we propose a new method to obtain a suitable
DL for DWT with application to ECG signal processing. As
opposed to the method presented in [10], our method does
not require any prior information of the signal distribution
model. More specifically, our method utilizes the sparseness
measure of the transformed signals at each DL of DWT.
Monte-Carlo simulation results have verified the effectiveness
of our method.

II. BACKGROUND AND PROBLEM FORMULATION

A. Review of DWT

A wavelet, in the sense of DWT, is an orthogonal function
which can be applied to an infinite group of data. A typical
DWT decomposition equation can be formulated as [11]

DWT(m, k)=
1

a

N−1∑
n=0

s(n)g

(
k − b

a

)
(1)

where s(n) is the original signal, a = am0 , b = nam0 , N
is the number of samples in the windowed signal, function
g(·) is called the mother wavelet, m is the DL index while
a and b are called the scaling and translation parameter,
respectively. In the case of a0 = 2, DWT can be interpreted
as a multi-stage filter banks with high-pass (HP) and low-
pass (LP) filters performing a series of dilations. Coefficients
obtained after the HP filters are called detail coefficients while
those after the LP filter are called the approximate coefficients.
Throughout this paper, a0 = 2 is adopted. Figure 1 illustrates
the process of a 2-level DWT decomposition. At each level,
the approximate/detail coefficients represent a filtered signal
spanning only half of the frequency band. This improves the
frequency resolution as the frequency uncertainty is reduced
by half. Following the Nyquist’s theorem, the output of each
LP and HP filter can be decimated by a factor of two. This also
explains why DWT provides arbitrary good time resolution at
high frequencies and arbitrary good frequency resolution at
low frequencies.

B. Review of entropy based DL determination in DWT [10]

We first denote the additive noise as v(n). The noisy
signal x(n) can be written as x(n) = s(n) + v(n). A
frame of the clean signal with length N can be expressed
as s(n) = [s(n) s(n− 1) · · · s(n−N + 1)] while

x(n) = s(n) + v(n) (2)

is a frame of the noisy signal such that v(n) =
[v(n) v(n− 1) · · · v(n−N + 1)].

The motivation of using entropy to determine DL in DWT
is that the energy of the clean signal s(n) are concentrated
on several DLs while the energy of noise scatters in the
whole temporal scales which decays rapidly with DL [10]. The
authors of [10] proposed to use a certain small DL initially
and apply dyadic DWT to denoise x(n). It has been pointed

out in [10] that as the DL increases, the wavelet entropy en-
ergy (WEE) of denoised x(n) should be significantly different
from that of a pure noise frame v(n) at a certain level m∗.
It has also been shown in [10] that once the number of DL
exceeds m∗, some clean signal s(n) would be removed in the
denoising process and therefore, the suitable DL should be m∗

minus 1. The analytic steps proposed in [10] are summarized
as follows:

1) Determine the theoretical maximum DL, i.e., DLmax =
log2 N .

2) Normalize the noisy signal by x′(n) = x(n)−μ
σ , where

μ and σ are the mean and standard deviation of x(n),
respectively.

3) Apply dyadic DWT to x(n) from DL 1 to log2 N and
compute the WEE at each DL. Subsequently, plot the
WEE curve of x(n).

4) According to practical situations and experiences, an
appropriate probability distribution model is chosen to
generate a “normalized” noise series with the same
length of x(n). The WEE curve of this noise series is
determined by Monte-Carlo simulation.

5) Finally, compare the WEE of x(n) with that of the pure
noise series from DL of 1 to log2 N . Once at a certain
level m∗, the WEE of x(n) is significantly different from
that of the pure noise series, the best DL can be chosen
as (m∗ − 1).

One of the main drawbacks of this approach is the unknown
distribution model of the noise. It is important to note that we
do not have any prior information of the noise in a real-time
application. As a result, the implementation of this method is
difficult and it leads to poor performance when an inaccurate
distribution model is chosen. Another weakness of this method
is the computational load as it requires to regenerate a noisy
series and compute its WEE at each DL.

III. PROPOSED SPARSENESS BASED DL DETERMINATION

To develop an algorithm which does not require prior
information of the distribution model of the background noise,
we propose to exploit the sparsity of the transformed data
after DWT. It is well known that the coefficients of DWT
are generally sparse [7]. One way to quantify its degree
of sparseness is to evaluate the percentage of the number
of zero/near-zero coefficients among the entire transformed
coefficients [12], i.e.,

sp =
No

N
(3)

where No is the number of zero/near-zero coefficients and N
is the length of the original signal. Based on (3), we propose
to modify this definition slightly as

sp′ =
No

N − 1
. (4)

This is to constrain the value of sparseness between [0, 1],
i.e., sp′ = 1 in a perfectly sparse case while sp′ = 0 if only
one coefficient is non-zero.

In order to study the relationship between sparseness and
the number of DLs, a clean ECG signal from MIT-BIH Ar-
rhythmia Database [13] is adopted as an illustrative example.
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Fig. 2. (a) A frame of clean ECG signal from [13] with N = 1024;
(b) Noisy ECG where SNR = 20 dB.
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Fig. 3. Sparseness of the decomposed signal based on (a) the clean
ECG; (b) the noisy ECG with SNR = 20 dB.

An white Gaussian noise (WGN) is added to the original ECG
signal to achieve a signal-noise-ratio (SNR) of 20 dB such that
SNR = 10 log10

‖s(n)‖2
2

‖v(n)‖2
2

, where ‖·‖22 is the squared l2−norm.
Figure 2 (a) shows a clean ECG signal with frame length
N = 1024 and Fig. 2 (b) illustrates the noise contaminated
ECG signal with SNR = 20 dB. In each transformation, the
Haar wavelet is adopted. The DWT coefficients whose ampli-
tude are smaller or equal than 1/K of the largest coefficient,
i.e., DWT(m, k) ≤ max (DWT(m, k))

/
K, are regarded

as zero/near-zero coefficients. Empirically, 5 ≤ K ≤ 10.
The corresponding sparseness of the transformed signal at
each level, 1 ≤ m ≤ log2 1024, are plotted in Fig. 3. It
can be observed from Fig. 3 that the value of SP increases
with the increasing DL, which implies that the transformed
signal becomes more and more sparse. It is important to
note from Fig. 3 that the increasing rate of SP diminishes
with the increasing DL and it approaches the theoretical
maximum value 1 asymptotically. It can also be observed from
Fig. 3 that the sparseness of the transformed signal becomes
approximately saturated once m ≥ 5. This justifies that the
statistical property of transformed signal does not vary much
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Fig. 4. DWT decomposed signal using Haar wavelet at (a) m = 1;
(b) m = 2; (c) m = 8; (d) m = 10.

after the 5th decomposition level. Figure 4 shows the signals
after DWT using Haar wavelet at decomposition level 1, 2, 8
and 10, respectively. It can be seen that the energy are clustered
towards the low frequency as the DL increases and also, the
waveform shapes at level 8 and 10 are quite similar. Therefore,
it is motivated that choosing an optimal DL is correlated to
evaluating the sparseness of the transformed signal. At this
junction, we propose to consider the sparseness defined in
(3) as a criterion to determine the ‘best’ DL. By choosing a
suitable threshold of sparseness, the ‘best’ DL can be defined
as at which level the sparseness of the transformed signal
exceeds such threshold.

IV. SIMULATION RESULTS

In order to investigate the effectiveness of our proposed
method, this section presents the results of mass simulations
under different scenarios. In these simulations, 219 sets of
clean ECG signals are adopted from [13], each of which is of
frame length N = 1024. The Haar wavelet is used through
out all DWT decompositions. In order to obtain a suitable
threshold value of sparseness, Monte-Carlo simulations are
performed under three different noise levels SNR = 15, 20
and 25 dB. For each SNR scenario, a group of 219 simulations
are conducted.

For clarity, we only plot the results of SNR = 15 dB in
Fig. 5. It can be observed from Fig. 5 (a) that the SP values
of these 219 sets of ECG signals overlap with each other
at each decomposition level (1 ≤ m ≤ 10). This implies
that the sparseness of these ECG signals are approximately
the same. Similar trend can be observed from Fig. 5 (b) for
the noisy signals. Table I summarizes the sparseness measure
of the signals after DWT at each decomposition level under
different noise levels in a statistical manner. The ‘mean’ is
the averaged sparseness value across the 219 ECG signals
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TABLE I
MEAN AND VARIANCE OF THE SPARSENESS MEASURE IN THE MONTE-CARLO SIMULATIONS.

Decomposition level 1 2 3 4 5 6 7 8 9 10
SNR=25 mean 0.4986 0.7416 0.8613 0.9227 0.9551 0.9768 0.9891 0.9963 0.9990 1.0000

variance 1.0e-004 *
0.0301 0.0535 0.0663 0.0607 0.1063 0.0601 0.0246 0.0084 0.0000 0.0000

SNR=20 mean 0.4857 0.7237 0.8430 0.9048 0.9386 0.9586 0.9746 0.9878 0.9946 0.9991
variance 1.0e-004 *

0.0513 0.1163 0.1771 0.1542 0.1636 0.1481 0.1551 0.0782 0.0264 0.0093
SNR=15 mean 0.4721 0.7083 0.8283 0.8862 0.9150 0.9375 0.9568 0.9720 0.9853 0.9933

variance 1.0e-004 *
0.0822 0.1327 0.1724 0.2499 0.2521 0.2924 0.2207 0.1627 0.1244 0.0430
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Fig. 5. Sparseness of the decomposed signal based on (a) the clean
ECG; (b) the noisy ECG with SNR = 15 dB using Monte-Carlo
simulation with 219 iterations.

while the ‘variance’ is the squared standard deviation of the
results obtained from all these 219 signals. It can be observed
from Table I that the sparseness value of the transformed
signals increases gradually with the DL for each SNR scenario.
In general, a higher noise level results in a more dispersive
transformed signal which is in line with the dispersive nature
of WGN. It is important to note from Table I that among all the
simulations, the sparseness is nearly saturated when it reaches
0.9. Therefore, we can set the sparseness threshold as 0.9
empirically in order to determine the suitable DL. Following
this, the ‘best’ DL can be determined as 4 for the cases of
SNR = 25 and 20 dB while for SNR = 15 dB, it can be
determined as 5.

V. CONCLUSION

In this paper, we proposed a computational efficient method
to determine the suitable DL for DWT with application to
ECG signal processing. The proposed method exploited the
sparseness of the transformed signal at each DL. Monte-Carlo
simulation results have demonstrated that sparseness is a sig-
nificant characteristic of ECG signals after DWT. Specifically,
the sparseness of transformed ECG signals increases gradually
to the theoretical maximum value. More importantly, the
increasing rate of sparseness measure reduces asymptotically
when the DL increases. Unlike the method proposed in [10],

our proposed method does not require any prior information
of the input which is suitable for real-time processing.
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