Search results for: temperature distribution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4177

Search results for: temperature distribution.

3577 Exergy Analysis of Vapour Compression Refrigeration System Using R507A, R134a, R114, R22 and R717

Authors: Ali Dinarveis

Abstract:

This paper compares the energy and exergy efficiency of a vapour compression refrigeration system using refrigerants of different groups. In this study, five different refrigerants including R507A, R134a, R114, R22 and R717 have been studied. EES Program is used to solve the thermodynamic equations. The results of this analysis are shown graphically. Based on the results, energy and exergy efficiencies for R717 are higher than the other refrigerants. Also, the energy and exergy efficiencies will be decreased with increasing the condensing temperature and decreasing the evaporating temperature.

Keywords: Energy, exergy, refrigeration, temperature, thermodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
3576 Effect of Temperature on the Water Retention Capacity of Liner Materials

Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla

Abstract:

Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.

Keywords: Soil water retention curve, sand-expansive clay mixture, suction, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
3575 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India

Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar

Abstract:

In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.

Keywords: Thermoelectric generator, LED, converts, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
3574 Hole Configuration Effect on Turbine Blade Cooling

Authors: A.Hasanpour, M. Farhadi, H.R. Ashorynejad

Abstract:

In this paper a numerical technique is used to predict the metal temperature of a gas turbine vane. The Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream turbine section to avoid thermal failure. This study is performed the solution of external flow, internal convection, and conduction within the metal vane. Also the trade-off between the cooling performances in four different hole shapes and configurations is performed. At first one of the commonly used cooling hole geometry is investigated; cylindrical holes and then two other configurations are simulated. The average temperature magnitude in mid-plan section of each configuration is obtained and finally the lower temperature value is selected such as best arrangement.

Keywords: Forced Convection, Gas Turbine Blade, Hole Configuration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2597
3573 Studies on Various Parameters Involved in Conjugation of Starch with Lysine for Excellent Emulsification Properties Using Response Surface Methodology

Authors: Sourish Bhattacharya, Priyanka Singh

Abstract:

The process parameters, starch-water ratio (A, (w/v) %), pH of suspension (B), Temperature(C, °C) and Time (D, hrs.)., were optimized for the preparation of starch-lysine conjugate and studying their effect on stability of emulsions by calculating emulsion stability index using response surface methodology. The optimized conditions are pH 9.0, temperature 60oC, reaction time 6 hrs, starch:water ratio 1:2.5, having emulsion stability index was 0.72.

Keywords: Emulsion stability index, pH of suspension, Starch-water ratio, Temperature, Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
3572 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: Acetic acid, hydrogenation, PtSn, operating condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
3571 Phenomenological and Theoretical Analysis of Relativistic Temperature Transformation and Relativistic Entropy

Authors: Marko Popovic

Abstract:

There are three possible effects of Special Theory of Relativity (STR) on a thermodynamic system. Planck and Einstein looked upon this process as isobaric; on the other hand Ott saw it as an adiabatic process. However plenty of logical reasons show that the process is isotherm. Our phenomenological consideration demonstrates that the temperature is invariant with Lorenz transformation. In that case process is isotherm, so volume and pressure are Lorentz covariant. If the process is isotherm the Boyles law is Lorentz invariant. Also equilibrium constant and Gibbs energy, activation energy, enthalpy entropy and extent of the reaction became Lorentz invariant.

Keywords: STR, relativistic temperature transformation, Boyle'slaw, equilibrium constant, Gibbs energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
3570 Application of Sensory Thermography as Measuring Method to Study Median Nerve Temperatures

Authors: Javier Ordorica Villalvazo, Claudia Camargo Wilson, Jesus Everardo Olguin Tiznado

Abstract:

This paper presents an experimental case using sensory thermography to describe temperatures behavior on median nerve once an activity of repetitive motion was done. Thermography is a noninvasive technique without biological hazard and not harm at all times and has been applied in many experiments to seek for temperature patterns that help to understand diseases like cancer and cumulative trauma disorders (CTD’s). An infrared sensory thermography technology was developed to execute this study. Three women in good shape were selected for the repetitive motion tests for 4 days, two right-handed women and 1 left handed woman, two sensory thermographers were put on both median nerve wrists to get measures. The evaluation time was of 3 hours 30 minutes in a controlled temperature, 20 minutes of stabilization time at the beginning and end of the operation. Temperatures distributions are statistically evaluated and showed similar temperature patterns behavior.

Keywords: Median nerve, temperature, sensory thermography, wrists, CTD’s.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
3569 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad

Abstract:

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Keywords: Softening, high-pressure, polystyrene, CO2 diffusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
3568 Ethnobotany and Distribution of Dioscoreahispida Dennst. (Dioscoreaceae) in Besut, Marang and Setiu Districts of Terengganu, Peninsular Malaysia

Authors: M. Nashriyah, T. Salmah, M.Y. NurAtiqah, O. Siti Nor Indah, A.W. MuhamadAzhar, S. Munirah, Y. Nornasuha, A. Abdul Manaf

Abstract:

Dioscorea species or commonly named as yam is reported to be one of the major food sources worldwide. This ethnobotanical study was conducted to document local knowledge and potentials of DioscoreahispidaDennst. and to investigate and record its distribution in three districts of Terengganu. Information was gathered from 23 villagers from three districts of Besut, Marang and Setiu by using semi-structured questionnaire. The villagers were randomly selected and no appointment was made prior to the visits. For distribution, the location of Dioscoreahispida was recorded by using the Global Positioning System (GPS). The villagers identified Dioscoreahispida or locally named ubigadong by looking at the physical characteristics that include its leaf shape, stem and the color of the tuber-s flesh. The villagers used Dioscoreahispida in many ways in their life such as for food, medicinal purposes and fish poison.

Keywords: Dioscoreahispida, ethnobotany, intoxicating yam, ubigadong, Terengganu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
3567 Synthesis and Thermoelectric Behavior in Nanoparticles of Doped Co Ferrites

Authors: M. Anis-ur- Rehman, A. Abdullah, Mariam Ansari , Zeb-un-Nisa, M. S. Awan

Abstract:

Samples of CoFe2-xCrxO4 where x varies from 0.0 to 0.5 were prepared by co-precipitation route. These samples were sintered at 750°C for 2 hours. These particles were characterized by X-ray diffraction (XRD) at room temperature. The FCC spinel structure was confirmed by XRD patterns of the samples. The crystallite sizes of these particles were calculated from the most intense peak by Scherrer formula. The crystallite sizes lie in the range of 37-60 nm. The lattice parameter was found decreasing upon substitution of Cr. DC electrical resistivity was measured as a function of temperature. The room temperature thermoelectric power was measured for the prepared samples. The magnitude of Seebeck coefficient depends on the composition and resistivity of the samples.

Keywords: Ferrites, crystallite size, drift mobility, seebeck coefficient, thermopower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
3566 Extreme Rainfall Frequency Analysis for Meteorological Sub-Division 4 of India Using L-Moments

Authors: Th. Arti Devi, Parthasarthi Choudhury

Abstract:

Extreme rainfall frequency analysis for Meteorological Sub-Division 4 of India was analyzed using L-moments approach. Serial Correlation and Mann Kendall tests were conducted for checking serially independent and stationarity of the observations. The discordancy measure for the sites was conducted to detect the discordant sites. The regional homogeneity was tested by comparing with 500 generated homogeneous regions using a 4 parameter Kappa distribution. The best fit distribution was selected based on ZDIST statistics and L-moments ratio diagram from the five extreme value distributions GPD, GLO, GEV, P3 and LP3. The LN3 distribution was selected and regional rainfall frequency relationship was established using index-rainfall procedure. A regional mean rainfall relationship was developed using multiple linear regression with latitude and longitude of the sites as variables.

Keywords: L-moments, ZDIST statistics, Serial correlation, Mann Kendall test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
3565 Exergy Based Performance Analysis of a Gas Turbine Unit at Various Ambient Conditions

Authors: Idris A. Elfeituri

Abstract:

This paper studies the effect of ambient conditions on the performance of a 285 MW gas turbine unit using the exergy concept. Based on the available exergy balance models developed, a computer program has been constructed to investigate the performance of the power plant under varying ambient temperature and relative humidity conditions. The variations of ambient temperature range from zero to 50 ºC and the relative humidity ranges from zero to 100%, while the unit load kept constant at 100% of the design load. The exergy destruction ratio and exergy efficiency are determined for each component and for the entire plant. The results show a moderate increase in the total exergy destruction ratio of the plant from 62.05% to 65.20%, while the overall exergy efficiency decrease from 38.2% to 34.8% as the ambient temperature increases from zero to 50 ºC at all relative humidity values. Furthermore, an increase of 1 ºC in ambient temperature leads to 0.063% increase in the total exergy destruction ratio and 0.07% decrease in the overall exergy efficiency. The relative humidity has a remarkable influence at higher ambient temperature values on the exergy destruction ratio of combustion chamber and on exergy loss ratio of the exhaust gas but almost no effect on the total exergy destruction ratio and overall exergy efficiency. At 50 ºC ambient temperature, the exergy destruction ratio of the combustion chamber increases from 30% to 52% while the exergy loss ratio of the exhaust gas decreases from 28% to 8% as the relative humidity increases from zero to 100%. In addition, exergy analysis reveals that the combustion chamber and exhaust gas are the main source of irreversibility in the gas turbine unit. It is also identified that the exergy efficiency and exergy destruction ratio are considerably dependent on the variations in the ambient air temperature and relative humidity. Therefore, the incorporation of the existing gas turbine plant with inlet air cooling and humidifier technologies should be considered seriously.

Keywords: Destruction, exergy, gas turbine, irreversibility, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
3564 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
3563 Investigation of Droplet Size Produced in Two-Phase Gravity Separators

Authors: Kul Pun, F. A. Hamad, T. Ahmed, J. O. Ugwu, J. Eyers, G. Lawson, P. A. Russell

Abstract:

Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size.

Keywords: Two-phase separator, average bubble droplet, bubble size distribution, liquid-liquid phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325
3562 Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow

Authors: Thomas Fiedler, Irina V. Belova, Graeme E. Murch

Abstract:

Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.

Keywords: Coupled Analysis, Laminar Flow, Lattice MonteCarlo, Thermal Diffusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
3561 Stresses Distribution in Spot, Bonded, and Weld- Bonded Joints during the Process of Axial Load

Authors: Essam A. Al-Bahkali, Mahir H. Es-saheb, Jonny Herwan

Abstract:

In this study the elastic-plastic stress distribution in weld-bonded joint, fabricated from austenitic stainless steel (AISI 304) sheet of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading is investigated. This is needed to improve design procedures and welding codes, and saving efforts in the cumbersome experiments and analysis. Therefore, a complete 3-D finite element modelling and analysis of spot welded, bonded and weld-bonded joints under axial loading conditions is carried out. A comprehensive systematic experimental program is conducted to determine many properties and quantities, of the base metals and the adhesive, needed for FE modelling, such like the elastic – plastic properties, modulus of elasticity, fracture limit, the nugget and heat affected zones (HAZ) properties, etc. Consequently, the finite element models developed, for each case, are used to evaluate stresses distributions across the entire joint, in both the elastic and plastic regions. The stress distribution curves are obtained, particularly in the elastic regions and found to be consistent and in excellent agreement with the published data. Furthermore, the stresses distributions are obtained in the weld-bonded joint and display the best results with almost uniform smooth distribution compared to spot and bonded cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint of all processes.

Keywords: Spot Welded, Weld-Bonded, Load-Displacement curve, Stress distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
3560 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, marine sediment, bathymetry, grain size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
3559 A Risk Assessment for the Small Hive Beetle Based on Meteorological Standard Measurements

Authors: J. Junk, M. Eickermann

Abstract:

The Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae) is a parasite for honey bee colonies, Apis mellifera, and was recently introduced to the European continent, accidentally. Based on the literature, a model was developed by using regional meteorological variables (daily values of minimum, maximum and mean air temperature as well as mean soil temperature at 50 mm depth) to calculate the time-point of hive invasion by A. tumida in springtime, the development duration of pupae as well as the number of generations of A. tumida per year. Luxembourg was used as a test region for our model for 2005 to 2013. The model output indicates a successful surviving of the Small Hive Beetle in Luxembourg with two up to three generations per year. Additionally, based on our meteorological data sets a first migration of SHB to apiaries can be expected from mid of March up to April. Our approach can be transferred easily to other countries to estimate the risk potential for a successful introduction and spreading of A. tumida in Western Europe.

Keywords: Aethina tumida, air temperature, larval development, soil temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
3558 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.

Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
3557 Sliding Joints and Soil-Structure Interaction

Authors: Radim Cajka, Pavlina Mateckova, Martina Janulikova, Marie Stara

Abstract:

Use of a sliding joint is an effective method to decrease the stress in foundation structure where there is a horizontal deformation of subsoil (areas afflicted with underground mining) or horizontal deformation of a foundation structure (pre-stressed foundations, creep, shrinkage, temperature deformation). A convenient material for a sliding joint is a bitumen asphalt belt. Experiments for different types of bitumen belts were undertaken at the Faculty of Civil Engineering - VSB Technical University of Ostrava in 2008. This year an extension of the 2008 experiments is in progress and the shear resistance of a slide joint is being tested as a function of temperature in a temperature controlled room. In this paper experimental results of temperature dependant shear resistance are presented. The result of the experiments should be the sliding joint shear resistance as a function of deformation velocity and temperature. This relationship is used for numerical analysis of stress/strain relation between foundation structure and subsoil. Using a rheological slide joint could lead to a decrease of the reinforcement amount, and contribute to higher reliability of foundation structure and thus enable design of more durable and sustainable building structures.

Keywords: Pre-stressed foundations, sliding joint, soil-structure interaction, subsoil horizontal deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
3556 Phase Transformation Temperatures for Shape Memory Alloy Wire

Authors: Tan Wee Choon, Abdul Saad Salleh, Saifulnizan Jamian, Mohd. Imran Ghazali

Abstract:

Phase transformation temperature is one of the most important parameters for the shape memory alloys (SMAs). The most popular method to determine these phase transformation temperatures is the Differential Scanning Calorimeter (DSC), but due to the limitation of the DSC testing itself, it made it difficult for the finished product which is not in the powder form. A novel method which uses the Universal Testing Machine has been conducted to determine the phase transformation temperatures. The Flexinol wire was applied with force and maintained throughout the experiment and at the same time it was heated up slowly until a temperature of approximately 1000C with direct current. The direct current was then slowly decreased to cool down the temperature of the Flexinol wire. All the phase transformation temperatures for Flexinol wire were obtained. The austenite start at 52.540C and austenite finish at 60.900C, while martensite start at 44.780C and martensite finish at 32.840C.

Keywords: Phase transformation temperature, Robotic, Shapememory alloy, Universal Testing Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3932
3555 Networks with Unreliable Nodes and Edges: Monte Carlo Lifetime Estimation

Authors: Y. Shpungin

Abstract:

Estimating the lifetime distribution of computer networks in which nodes and links exist in time and are bound for failure is very useful in various applications. This problem is known to be NP-hard. In this paper we present efficient combinatorial approaches to Monte Carlo estimation of network lifetime distribution. We also present some simulation results.

Keywords: Combinatorial spectrum, Monte Carlo, Networklifetime, Unreliable nodes and edges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
3554 Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature

Authors: W. Wen, G. Jackson, S. Maskill, D. G. McCartney, W. Sun

Abstract:

CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.

Keywords: CoNiCrAlY coatings, mechanical properties, DBTT, miniature specimen testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
3553 Static/kinetic Friction Behaviour of a Clutch Facing Material: Effects of Temperature and Pressure

Authors: A. Chaikittiratana, S. Koetniyom, S. Lakkam

Abstract:

The feasibility of applying a simple and cost effective sliding friction testing apparatus to study the friction behaviour of a clutch facing material, effected by the variation of temperature and contact pressure, was investigated. It was found that the method used in this work was able to give a convenient and cost effective measurement of friction coefficients and their transitions of a clutch facing material. The obtained results will be useful for the development process of new facing materials.

Keywords: Static/kinetic friction, sliding friction testing apparatus, contact pressure and temperature dependent of friction coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4360
3552 Kinetic Study of 1-Butene Isomerization over Hydrotalcite Catalyst

Authors: S. Sripinun, K. Suriye, S. Kunjara Na Ayudhyab, P. Praserthdam, S. Assabumrungrat

Abstract:

This work studied the isomerization of 1-butene over hydrotalcite catalyst. The experiments were conducted at various gas hourly space velocity (GHSV), reaction temperature and feed concentration. No catalyst deactivation was observed over the reaction time of 16 hours. Two major reaction products were trans-2- butene and cis-2-butene. The reaction temperature played an important role on the reaction selectivity. At high operating temperatures, the selectivity of trans-2-butene was higher than the selectivity of cis-2-butene while it was opposite at lower reaction temperature. In the range of operating condition, the maximum conversion of 1-butene was found at 74% when T = 673 K and GHSV = 4 m3/h/kg-cat with trans- and cis-2-butene selectivities of 54% and 46%, respectively. Finally, the kinetic parameters of the reaction were determined.

Keywords: Hydrotalcite, isomerization, kinetic, 1-butene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
3551 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
3550 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari

Authors: V. Jafari, M. Jafari

Abstract:

When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.

Keywords: ChaharMahal and Bakhtiari, climate change, impacts, Iran, milk production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
3549 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: Bioheat transfer, Electrode, Neuroprosthetics, TENS, Transcutaneous stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
3548 Lateral Pressure in Squat Silos under Eccentric Discharge

Authors: Y. Z. Zhu, S. P. Meng, W. W. Sun

Abstract:

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Keywords: Squat silo, eccentric discharge, lateral pressure, asymmetric distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3159