Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari

Authors: V. Jafari, M. Jafari

Abstract:

When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.

Keywords: ChaharMahal and Bakhtiari, climate change, impacts, Iran, milk production.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.2571950

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483

References:


[1] J. L. Hatfield, K. J. Boote, B. A. Kimball, L. H. Ziska, and R. C. Izaurralde, “Climate impacts on agriculture: Implications for crop production”. Publications from USDA-ARS/UNL Faculty. 1350. http://digitalcommons.unl.edu/usdaarsfacpub/1350/, 2011.
[2] J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O'Connell, D. K. Ray, P. C. West, C. Balzer, E. M. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockstrom, J. Sheehan, S. Siebert, D. Tilman, and D. P. M. Zaks, “Solutions for a cultivated planet nature”, 478, pp. 337-342, 2011.
[3] J. A. Foley, R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder, “Global consequences of land use”. Science, 309, pp. 570-574, 2005.
[4] Y. Goryakin, T. Lobstein, W. P. T. James, and M. Suhrcke, “The impact of economic, political and social globalization on overweight and obesity in the 56 low- and middle-income countries”. Social Science & Medicine 133, 67-76, 2015.
[5] L. A. Duguma, and P. A. Minang, “Climate change mitigation and adaptation in the Land use sector: From complementarity to synergy”. Environmental management, 54: 420-432, 2014.
[6] A. J. McMichael, “Globalization, climate change, and human health”. The new england journal of medicine, 368, 1335-43, 2013.
[7] D. Tilman, J. Fargione, B. Wolff, C. D'Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff, and D. Swackhamer, “Forecasting agriculturally driven global environmental change”, Science, 292, pp. 281-284, 2001.
[8] O. E. Sala, F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall, “Biodiversity – global biodiversity scenarios for the year 2100”. Science, 287, pp. 1770-1774, 2000.
[9] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, (Eds). IPCC 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK/New York. 996 pp, 2007.
[10] T. F., Stocker, D. Qin, D., Plattner, D. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, (Eds.). IPCC 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1535 pp, 2013.
[11] J. J. Lennon, “Potential impacts of climate change on agriculture and food safety within the island of Ireland”. Trends in Food Science & Technology, Vol. 44, Issue 1, p: 1-0, 2015.
[12] B. Bates, Z. W. Kundzewicz, S. Wu, and J. Palutikof, (Eds) (IPCC, 2008). Climate Change and Water. Technical Paper of the Intergovermental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp, 2008.
[13] Q. Ma, Retrieved 2016-04-26. NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide. https://www.giss.nasa.gov/research/briefs/ma_01/, 1998.
[14] A. Lacis, NASA GISS: CO2: The Thermostat that Controls Earth's Temperature, New York: NASA GISS. https://www.giss.nasa.gov/research/briefs/lacis_01/, 2010.
[15] H. Le Treut, R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, and M. Prather, Historical overview of climate change science. In: Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M. and Miller H. L., editors). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
[16] T. R. Karl, and K. E. Trenberth, “Modern global climate change”. Science. 302 (5651): 1719–23, 2003.
[17] F. N. Tubiello, M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith, “The FAOSTAT database of greenhouse gas emissions from agriculture”. Environmental Research Letters, 8, 015009, 2013.
[18] G. Mauger, Y. Bauman, T. Nennich, and E. Salathè, “Impacts of Climate Change on Milk Production in the United States”. The Professional Geographer, Vol. 67, Issue 1, 2014.
[19] Agro-Statistics, Ministry of Agriculture-Jihad, Department for Planning and Economic Affairs, Centre of Public Relations and Information, Centre of Agro-Statistics and Information, 2016.
[20] S. Delpasand, M. Moradnezhadi, Z. Hossaini, and Y. Askari, “The possibility of created the vegetation cover maps in the Centra Zagros forest by using the IRS satellite image”. International journal of Advanced Biolgical and Biomedical Research, Vol. 1, Issue 8, 813-821, 2013.
[21] Chahar Mahal & Bakhtiari meteorogical administration site http://chaharmahalmet.ir/en/c1.asp.
[22] K. Ahmadi, H. R. Ebadzadeh, S. Mohammad Nia Afroozi, R. A. Taghani, and A. Saadat Akhtar, “Investigation of the process of dairy production of the country (Iran)”. Ministry of Agriculture-Jihad, Department for Planning and Economic Affairs, Centre of Public Relations and Information, 2016.
[23] Islamic Republic of Iran Meteorological Organization (IRIMO) site, http://irimo.ir/eng/wd/600-IRIMO.html, 2018.
[24] C. T. Kadzere, M. R. Murphy, N. Silanikove, E. Maltz, “Heat stress in lactating dairy cows: a review”. Journal of Endodontics, vol. 77, Issue 1, pp: 59-91, 2002.
[25] P. Atrian, and H. Aghdam Shahryar, “Heat stress in Dairy cows (A Review)”, Research in Zoology, 2 (4): 31-37, 2012.
[26] J. K. Msechu, M. Mgheni, O. Syrstad, “Influence of various climatic factors on milk production in cattle in Tanzania”. Trop. Anim. Health Prod., 27 (2): 121-6, 1995.
[27] A. R. Shahdadi, M. Tahmoorespur, M. M. Shariati, “Genetic Analysis of Productive Performance of Holstein Dairy Cows in Different Climate Regions of Iran”. Iranian Journal of Animal Science Research, Vol. 9, No. 1, p. 93-103, 2017.
[28] N. Key, S. Sneeringer, and D. Marquardt, “Climate Change, Heat Stress, and U. S. Dairy Production”, ERR-175, U.S. Department of Agriculture, Economic Research Service, 2014.
[29] N. R. St-Pierre, B. Cobanov, and G. Schnitkey, “Economic losses fromheat stress by US livestock industries”. J. Dairy Sci. 86: (E. Suppl.): E52-E77, 2003.
[30] J. W. Fuquay, “Heat stress as it affects animal production”. J. Anim. Sci.; 52(1):164-74, 1981.
[31] F. S. Francés, A. M. Graña, P. A. Rojo, and A. G. Sánchez, “Geochemical Background and Baseline Values Determination and Spatial Distribution of Heavy Metal Pollution in Soils of the Andes Mountain Range (Cajamarca-Huancavelica, Peru)”. International Journal of Environmental Research and Public Health; 14(8): 859,2017.
[32] L. C. Mollon, G. J. Norton, L. Trakal, E. Moreno-Jimenez, F. Z. Elouali, R. L. Hough, and L. Beesley, “Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil”. Environ. Pollut. 218:419-427. doi: 10.1016/j.envpol.2016.07.021, 2016.
[33] M. Ajorlo, R. Bin Abdullah, A. H. Mohd. Hanif, R. Abd. Halim, and M.K. Yusoff, “How Cattle Grazing Influences Heavy Metal Concentrations in Tropical Pasture Soils”. Polish J. of Environ. Stud. Vol. 19, No. 6, 1369-1375, 2010.