Search results for: process parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8373

Search results for: process parameters

7773 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: k-factor, GARMA, LLWNN, G-GARCH, electricity price, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
7772 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
7771 Optimum Design of Launching Nose during Incremental Launching Construction of Same-Span Continuous Bridge

Authors: Weifeng Wang, Hengbin Zheng, Xianwei Zeng

Abstract:

The launching nose plays an important role in the incremental launching construction. The parameters of the launching nose essentially affect the internal forces of the girder during the construction. The appropriate parameters can decrease the internal forces in the girder and save the material and reduce the cost. The simplified structural model, which is made with displacement method according to the characteristic of incremental launching construction and the variation rule of the internal forces, calculates and analyzes the effect of the length, the rigidity and weight of launch nose on the internal forces of girder during the incremental launching construction. The method, which can calculate the launching nose parameters for the optimum incremental launching construction, is achieved. This method is simple, reliable and easy for practical use.

Keywords: incremental launching, launching nose, optimumanalysis, displacement method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3635
7770 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
7769 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines

Authors: H. Al-Jabli

Abstract:

Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.

Keywords: High saline brine, freeze-melting process, ice crystallization, brine disposal process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
7768 Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel

Authors: Nilrudra Mandal, B Doloi, B Mondal

Abstract:

An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.

Keywords: Analysis of variance (ANOVA), Central Composite Design (CCD), Response Surface Methodology (RSM), Zirconia Toughened Alumina (ZTA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782
7767 Overriding Moral Intuitions – Does It Make Us Immoral? Dual-Process Theory of Higher Cognition Account for Moral Reasoning

Authors: Michał Białek, Simon J. Handley

Abstract:

Moral decisions are considered as an intuitive process, while conscious reasoning is mostly used only to justify those intuitions. This problem is described in few different dual-process theories of mind, that are being developed e.g. by Frederick and Kahneman, Stanovich and Evans. Those theories recently evolved into tri-process theories with a proposed process that makes ultimate decision or allows to paraformal processing with focal bias.. Presented experiment compares the decision patterns to the implications of those models. In presented study participants (n=179) considered different aspects of trolley dilemma or its footbridge version and decided after that. Results show that in the control group 70% of people decided to use the lever to change tracks for the running trolley, and 20% chose to push the fat man down the tracks. In contrast, after experimental manipulation almost no one decided to act. Also the decision time difference between dilemmas disappeared after experimental manipulation. The result supports the idea of three co-working processes: intuitive (TASS), paraformal (reflective mind) and algorithmic process.

Keywords: Moral reasoning, moral decision, reflection, trolley problem, dual-process theory of reasoning, tri-process theory of cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
7766 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: Delayed systems, Fuzzy Immune PID, Optimization, Smith predictor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
7765 An Empirical Validation of the Linear- Hyperbolic Approximation of the I-V Characteristic of a Solar Cell Generator

Authors: A. A. Penin

Abstract:

An empirical linearly-hyperbolic approximation of the I - V characteristic of a solar cell is presented. This approximation is based on hyperbolic dependence of a current of p-n junctions on voltage for large currents. Such empirical approximation is compared with the early proposed formal linearly-hyperbolic approximation of a solar cell. The expressions defining laws of change of parameters of formal approximation at change of a photo current of family of characteristics are received. It allows simplifying a finding of parameters of approximation on actual curves, to specify their values. Analytical calculation of load regime for linearly - hyperbolic model leads to quadratic equation. Also, this model allows to define soundly a deviation from the maximum power regime and to compare efficiency of regimes of solar cells with different parameters.

Keywords: a solar cell generator, I − V characteristic, p − n junction, approximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
7764 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: Corrosion, duty cycle, pulsed current, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
7763 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions

Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin

Abstract:

One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.

Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
7762 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: Automatic calibration framework, approximate Bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
7761 A Study on Stochastic Integral Associated with Catastrophes

Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan

Abstract:

We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t).

Keywords: Stochastic integrals, single–server queue model, catastrophes, busy period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
7760 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad S. Daba, J. P. Dubois

Abstract:

Fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper utilized a Poisson modulated-weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multidiversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.

Keywords: Cellular communication, femto- and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
7759 About the Structural Stability of the Model of the Nonelectroneutral Current Sheath

Authors: V.V. Lyahov, V.M. Neshchadim

Abstract:

The structural stability of the model of a nonelectroneutral current sheath is investigated. The stationary model of a current sheath represents the system of four connected nonlinear differential first-order equations and thus they should manifest structural instability property, i.e. sensitivity to the infinitesimal changes of parameters and starting conditions. Domains of existence of the solutions of current sheath type are found. Those solutions of the current sheath type are realized only in some regions of sevendimensional space of parameters of the problem. The phase volume of those regions is small in comparison with the whole phase volume of the definition range of those parameters. It is shown that the offered model of a nonelectroneutral current sheath is applicable for theoretical interpretation of the bifurcational current sheaths observed in the magnetosphere.

Keywords: Distribution function, electromagnetic field, magnetoactive plasma, nonelectroneutral current sheath, structural instability, bifurcational current sheath.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
7758 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
7757 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
7756 Studies on Seasonal Variations of Physico- Chemical Parameters of Fish Farm at Govt. Nursery Unit, Muzaffargarh, Punjab, Pakistan

Authors: Muhammad Naeem, Abdus Salam, Muhammad Ashraf, Muhammad Imran, Mehtab Ahmad, Muhammad Jamshed Khan, Muhammad Mazhar Ayaz, Muzaffar Ali, Arshad Ali, Memoona Qayyum Abir Ishtiaq

Abstract:

The present study was designed to demonstrate the seasonal variations in physico-chemical parameters of fish farm at Govt. Nursery Unit, Muzaffargarh, Department of Fisheries Govt. of Punjab, Pakistan for a period of eight months from January to August 2008. Water samples were collected on fifteen days basis and have been analyzed for estimation of Air temperature, Water temperature, Light penetration, pH, Total dissolved oxygen, Clouds, Carbonates, Bicarbonates, Total carbonates, Total dissolved solids, Chlorides, Calcium and Hardness. Seasonal fluctuations were observed in all the physico-chemical parameters of fish farm. The overall physicochemical parameters of fish pond water remained within the tolerable range throughout the study period.

Keywords: Freshwater, Fish farm, Water quality, Seasonal variation, Chemical factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
7755 Plastic Flow through Taper Dies: A Threedimensional Analysis

Authors: Laxmi Narayan Patra, Susanta Kumar Sahoo, Mithun KumarMurmu

Abstract:

The plastic flow of metal in the extrusion process is an important factor in controlling the mechanical properties of the extruded products. It is, however, difficult to predict the metal flow in three dimensional extrusions of sections due to the involvement of re-entrant corners. The present study is to find an upper bound solution for the extrusion of triangular sectioned through taper dies from round sectioned billet. A discontinuous kinematically admissible velocity field (KAVF) is proposed. From the proposed KAVF, the upper bound solution on non-dimensional extrusion pressure is determined with respect to the chosen process parameters. The theoretical results are compared with experimental results to check the validity of the proposed velocity field. An extrusion setup is designed and fabricated for the said purpose, and all extrusions are carried out using circular billets. Experiments are carried out with commercially available lead at room temperature.

Keywords: Extrusion, Kinematically admissibly velocity fieldSpatial Elementary Rigid Region (SERR), Upper Bound Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
7754 The Development of the Quality Management Processes for the Building and Environment of the Basic Education Schools

Authors: Suppara Charoenpoom

Abstract:

The objectives of this research was to design and develop a quality management of the school buildings and environment. A quantitative and qualitative mixed research methodology was used. The population sample included 14 directors of primary schools. Two research tools were used. The first research tool included an in-depth interview and questionnaire. The second research tool included the Quality Business Process and Quality Work Procedure, and a Key Performance Indicator of each activity. The statistics included mean and standard deviation. The findings for the development of a quality management process of buildings and environment administration of the basic schools consisted of one quality business process (QBP) and seven quality work processes (QWP). The result from the experts’ evaluation revealed that the process and implementation of quality management of the school buildings and environment has passed the inspection process with consensus. This implies that the process of quality management of the school buildings and environment is suitable for implementation. Moreover, the level of agreement in the feasibility of the implementation of this plan had the mean in the range of 0.64-1.00 which suggests the design of the new plan is acceptable.

Keywords: Process, Building, Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
7753 Using Genetic Algorithms in Closed Loop Identification of the Systems with Variable Structure Controller

Authors: O.M. Mohamed vall, M. Radhi

Abstract:

This work presents a recursive identification algorithm. This algorithm relates to the identification of closed loop system with Variable Structure Controller. The approach suggested includes two stages. In the first stage a genetic algorithm is used to obtain the parameters of switching function which gives a control signal rich in commutations (i.e. a control signal whose spectral characteristics are closest possible to those of a white noise signal). The second stage consists in the identification of the system parameters by the instrumental variable method and using the optimal switching function parameters obtained with the genetic algorithm. In order to test the validity of this algorithm a simulation example is presented.

Keywords: Closed loop identification, variable structure controller, pseud-random binary sequence, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
7752 Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region

Authors: Sunusi N., Kresna A. J., Islamiyati A., Raupong

Abstract:

Hazard rate estimation is one of the important topics in forecasting earthquake occurrence. Forecasting earthquake occurrence is a part of the statistical seismology where the main subject is the point process. Generally, earthquake hazard rate is estimated based on the point process likelihood equation called the Hazard Rate Likelihood of Point Process (HRLPP). In this research, we have developed estimation method, that is hazard rate single decrement HRSD. This method was adapted from estimation method in actuarial studies. Here, one individual associated with an earthquake with inter event time is exponentially distributed. The information of epicenter and time of earthquake occurrence are used to estimate hazard rate. At the end, a case study of earthquake hazard rate will be given. Furthermore, we compare the hazard rate between HRLPP and HRSD method.

Keywords: Earthquake forecast, Hazard Rate, Likelihood point process, Point process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
7751 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata

Abstract:

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
7750 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer

Abstract:

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Keywords: Property damage analysis, effectiveness, ADAS, damage risk, accident research, accident scenarios.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
7749 Framework for the Modeling of the Supply Chain Collaborative Planning Process

Authors: D. Pérez, M. M. E. Alemany

Abstract:

In this work, a framework to model the Supply Chain (SC) Collaborative Planning (CP) process is proposed. The main contributions of this framework concern 1) the presentation of the decision view, the most important one due to the characteristics of the process, jointly within the physical, organisation and information views, and 2) the simultaneous consideration of the spatial and temporal integration among the different supply chain decision centres. This framework provides the basis for a realistic and integrated perspective of the supply chain collaborative planning process and also the analytical modeling of each of its decisional activities.

Keywords: Collaborative Planning, Decision View, Distributed Decision-Making, Framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
7748 The Auto-Tuning PID Controller for Interacting Water Level Process

Authors: Satean Tunyasrirut, Tianchai Suksri, Arjin Numsomran, Supan Gulpanich, Kitti Tirasesth

Abstract:

This paper presents the approach to design the Auto- Tuning PID controller for interactive Water Level Process using integral step response. The Integral Step Response (ISR) is the method to model a dynamic process which can be done easily, conveniently and very efficiently. Therefore this method is advantage for design the auto tune PID controller. Our scheme uses the root locus technique to design PID controller. In this paper MATLAB is used for modeling and testing of the control system. The experimental results of the interacting water level process can be satisfyingly illustrated the transient response and the steady state response.

Keywords: Coupled-Tank, Interacting water level process, PIDController, Auto-tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
7747 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns

Authors: Hyun-Woo Cho

Abstract:

The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.

Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
7746 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: Real estate price, least-square, grey correlation, macroeconomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
7745 A Software for Calculation of Optimum Conditions for Cotton Bobbin Drying in a Hot-Air Bobbin Dryer

Authors: Hilmi Kuscu, Ahmet Cihan, Kamil Kahveci, Ugur Akyol

Abstract:

In this study, a software has been developed to predict the optimum conditions for drying of cotton based yarn bobbins in a hot air dryer. For this purpose, firstly, a suitable drying model has been specified using experimental drying behavior for different values of drying parameters. Drying parameters in the experiments were drying temperature, drying pressure, and volumetric flow rate of drying air. After obtaining a suitable drying model, additional curve fittings have been performed to obtain equations for drying time and energy consumption taking into account the effects of drying parameters. Then, a software has been developed using Visual Basic programming language to predict the optimum drying conditions for drying time and energy consumption.

Keywords: Drying, bobbin, cotton, PLC control, Visual Basic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
7744 Silicone on Blending Vegetal Petrochemical Based Polyurethane

Authors: Flora E. Firdaus

Abstract:

Polyurethane foam (PUF) is formed by a chemical reaction of polyol and isocyanate. The aim is to understand the impact of Silicone on synthesizing polyurethane in differentiate volume of molding. The method used was one step process, which is simultaneously caried out a blending polyol (petroleum polyol and soybean polyol), a TDI (2,4):MDI (4,4-) (80:20), a distilled water, and a silicone. The properties of the material were measured via a number of parameters, which are polymer density, compressive strength, and cellular structures. It is found that density of polyurethane using silicone with volume of molding either 250 ml or 500 ml is lower than without using silicone.

Keywords: soybean, petro, silicone, polyurethane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986