
 

 

 
Abstract—We analyze stochastic integrals associated with a 

mutation process. To be specific, we describe the cell population 
process and derive the differential equations for the joint generating 
functions for the number of mutants and their integrals in generating 
functions and their applications. We obtain first-order moments of the 
processes of the two-way mutation process in first-order moment 
structure of X (t) and Y (t) and the second-order moments of a one-
way mutation process. In this paper, we obtain the limiting behaviour 
of the integrals in limiting distributions of X (t) and Y (t). 
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I. INTRODUCTION 

HE queueing theory has played an important role in the 
theory of probability and related concepts. Its applications 

have been utilized varies fields like communication system, 
industrial sector and so on. Human beings, telephone calls flow 
of finished products, failed machines and so on may be 
considered as queueing units. In modern days, the queueing 
models have been analyzed by assuming the telephone calls as 
the units for demanding service. 

In the analysis of some queueing system, we come across 
situations where the annihilation of all the system and 
paralysation of the service facility may take place upon the 
arrival of some kind of special events. These special events are 
called catastrophical events and they themselves form a point 
process which may be independent of the arrival and service 
pattern of the queueing system. Such events occur quite 
commonly in computer networks. For example, when an 
infected job or file arrive at a service station, the job or the file 
acts as a catastrophic event destroying all the files in the 
processor and paralysing momentarily the processor. 

II. THE BASIC STOCHASTIC MODEL 

Consider a cell population such as bacteria consisting of two 
types of cells called Red and White. Each cell type may undergo 
mutation or the divisional process or encounter death in case of 
action of bactericidal drugs. The following assumptions are 
made with the occurrence of these events. 

 The probability that any white cell at time becomes a red 
cell at timet δt is αδt 0 δt . 
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 The probability that any red cell at time becomes a white 
cell at timet δtisβδt 0 δt  

 The probability that any cell type at time t  encounters 
death at time t δtisμδt 0 δt  

 The probability that any white cell at time t splits into 
White cell at timet δt isλ δt 0 δt  

 The probability that any white cell at time t splits into red 
cells at time t splits into Red cells at timet δtisλ δt 0 δt  

 The parameters 	,  and are non-negative constants λ  
and λ are positive constants. 

 The mutation process, the splitting process and death 
process are independent of one another. 

 The cells behave independently of one another.  
when time t 0	with one white particle. LetR t) andW t) 
denote respectively the numbers of Red and White particle at 
time t. Then the total numberN t) of individuals at time t is 
given by: 
 

	 	              (1) 
 
Along with the stochastic processes	R t , W t and N t  

consider the following the stochastic integrals: 
	

R T dT	, W T dT	, N T dt   (2) 
 
The main impetus to study these integrals arises since they 

are associated with some cumulative response of the mutation 
process. For example, In the case of βgalactosidase gene, the 
stochastic integrals R T dT and W T dT represent 
respectively the durations of enzyme activities of the red 
particles up to time t. We denote: 

 

X t W T dT	, Y t R T dT 

 
We derive a system of integral equations for the generating 

functions associated with the population process. 

III. THE GENERATING FUNCTIONS AND THEIR APPLICATIONS 

We represent the generating functions with the following 
notations 
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∅ s ,s , s , s 	; t 	E s s e 	 e 	 │η 0  
 

where η W with η 0 	 W 0 1	, B 0 0  with η 0

	 W 0 1	, B 0 1 . Conditioning on the time of occurrence of 
the first splitting from timet 0and using probabilistic 
arguments, we have the following system of integro-differential 
equations for the joint-probability moment generating functions 
∅ W and∅ R . (3) and (4) are not solvable easily: 
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IV. A SINGLE QUEUE MODEL 
Consider a single–server queue model with infinite services 

and catastrophes.  Customer departure at the queue according 
to the Poisson process with rate λ.  We assume that the service 
–time has exponential distribution with parameter µ.  Let the 
service discipline be FIFO. We assume that the system capacity 
is infinite.  Let the catastrophic events departure independently 
at the service facility according to a Poisson process with rate γ 
[1].  The nature of a catastrophic event is that upon its departure 
at the service station it destroys all the customers there waiting.  
The catastrophe departure at queue j from the outside of the 
network according to the Poisson process with rate			 	,

1,2, . . .  Whenever a catastrophe departure at a queue, either 
from the outside or from another queue, all the customers in the 
queue are destroyed immediately and the server is ready to 
serve new customers [3]. Let Pn(t) be the probability that there 
are n customers in the system at time t , by routine procedure, 
we have:  
 

, 1,2… 
 (5) 

	
′ 	 1  

 
where λ and µ have the usual meanings. We assume that a 
customer departures to an empty at the service facility at time 

t=0 so that the busy period starts at time t=0.Then Pn(0) = δn,1, 
n=0 ,1, 2, ...... where:   

  

, 	
1	
0  

To solve (7), we proceed as follows. Defining:  
 

,

∞

 

 
We obtain from (4): 

 
,

	 	 , 1 			  (6) 
 

Subject to condition P(s,0) = s. (4) can be solved and we 
obtain: 
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In (5), we use the generating function: 

 

exp ∑ 	   (8) 

 

where we have set 	  and 	 we have 2	 	 and 

	 . In the above, , 0, 1, 2,…are modified Bessel 

functions of the first kind given by: 
 

	
2 	 ! ! 	 , 1; 	

 
 

Then equating the power of ++ on both idles, we obtain:  
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The above probabilities are completely describing the 

queueing process. 
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V. THE BUSY PERIOD 

We have already mentioned that the busy and the idle periods 
develop a random evolution in problems related to the queueing 
systems. We proceed to obtain the probability law of the busy 
period [7]. To do this, we impose further that there is an 
absorbing barrier at zero system size so that 	 gives the 
probability density function of the busy period[8], 
where represents the probability that the system size at time 
t is n . We assume that the server enters into the busy period at 
time t = 0. Then 0 1, 0 0	for n≠1 With absorption at 
the state 0, are: 
 

	 	 	 1 							                     (9) 
 

	 , 1 (10) 
 

Equations (9) and (10) are subject to the condition 	 0

, 	 0,1,2.. it is clear that 	  is the probability density 
function of the busy period. To find it, we proceed as follows: 
Define:  

 

, 	  

    

Then, K(S,0) = S and:  
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Integrating (11) we get: 
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Substituting the series expressions for , and  into 
(12) and equating the coefficients of s0 on both sides, we get: 
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The integral (12) admits a Laplace transform solution for 

	 . If  is the Laplace transform of 	  and ∗  is the 
Laplace transform of then we obtain: 
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(14) 

 
Inverting (14), we obtain the derivative and this gives 

the probability density function of the busy period. 

VI. THE RANDOM EVOLUTION OF A STOCHASTICAL INTEGRAL 

In this proposed project the idle period occurs whenever a 
catastrophic event occurs when server is busy [2]. Let there be 
a positive income when the server is busy, and a cost to pay 
when it is idle [6]. To study the net gain, we define the 
following costs. Let C1 be the profit per unit time of the busy 
period, C2 be the cost per unit time of the idle period not 
initiated by the departure of a catastrophic event and C3 be the 
cost per unit time of the idle period initiated by the departure of 
a catastrophic event[9]. Then the time – course of the net profit 
can be described by the random motion of a stochastic integral. 
To achieve this, we define stochastic process Z(t) as: 

 
1	

2	
3	

 

 
The stochastic process Z(t) is a market- point process and its 

probability law can be obtained in terms of the distributions of 
the busy and idle periods [4]. The idle periods are of two types 
and are characterized by the point process of catastrophic events 
[5], [10]. We not that: 

 

1 	μ  

2  

3 	  

 
If C(t) is the instantaneous cost at time t then: 

 

	
	, 	 1

	, 	 2

	, 	 3

  

Then the net gain X(t) is given by is 
identified as the position of the particle and the probability law 
of X(t) can be obtained by considering the random motion of 
the particle. 

VII. CONCLUSION 

In this paper, we analyzed the single server queueing model 
and we obtain the derivative and the probability density 
function of the busy period. Then the time-course of the net 
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profit is described by the random motion of a stochastic 
integral. To achieved stochastic process Z(t). 
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