Search results for: fault tolerant feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1329

Search results for: fault tolerant feature

729 Novel Hybrid Method for Gene Selection and Cancer Prediction

Authors: Liping Jing, Michael K. Ng, Tieyong Zeng

Abstract:

Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.

Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
728 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782
727 Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.)

Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Elitsa N. Kolentsova

Abstract:

Comparative research has been conducted to allow us to determine the accumulation of heavy metals (Pb, Zn and Cd) in the vegetative and reproductive organs of safflower, and to identify the possibility of its growth on soils contaminated by heavy metals and efficacy for phytoremediation. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.1, 0.5, 2.0, and 15 km) from the source of pollution. The contents of heavy metals in plant materials (roots, stems, leaves, seeds) were determined. The quality of safflower oils (heavy metals and fatty acid composition) was also determined. The quantitative measurements were carried out with inductively-coupled plasma (ICP). Safflower is a plant that is tolerant to heavy metals and can be referred to the hyperaccumulators of lead and cadmium and the accumulators of zinc. The plant can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of safflower seeds into oil and the use of the obtained oil will greatly reduce the cost of phytoremediation.

Keywords: Heavy metals, phytoremediation, polluted soils, safflower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
726 Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy

Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin

Abstract:

The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.

Keywords: Surface flattening, Strain energy, Minimum energy, approximate implicit method, Fashion design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
725 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
724 Social Relation between the Malays and Chinese Communities from a Civilizational Perspectives

Authors: Wan Norhasniah Wan Husin, Mohd Ridhuan Tee Abdullah

Abstract:

Towards the end of 19th century, the discovery of tin and the growing importance of rubber, had led Malaya to once again become the centre of attraction to western colonization, which later on caused the region to be influxed by cheap labour from China and India. One of the factors which attracted the alien communities was the characteristics of social relation offered by the Malays. If one analyzes the history of social relation of the Malays either among themselves or their relation with alien communities, it is apparent that the community places high regards to values such as tolerant, cooperative, respectful and helpful with each other. In fact, all these values are deeply rooted in the value of 'budi'. With the arrival of Islam, the value of 'budi' had been well assimilated with Islamic values thus giving birth to the value of 'budi-Islam'. Through 'budi- Islam', the Malay conducted their dealings with British as well the other communities during the time of peace or conflict. This value is well nurtured due to the geographical circumstances like the fertile, naturally rich land and bountiful marine life. Besides, a set of Malay customs known as 'adat' custom contributed in enhancing the values of budi.

Keywords: Adat System, budi and Islam, Chinese community, Malay community

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
723 Mitigation of Sag in Real Time

Authors: Vijay Gajanan Neve, Pallavi V. Pullawar, G. M. Dhole

Abstract:

Modern industrial processes are based on a large amount of electronic devices such as programmable logic controllers and adjustable speed drives. Unfortunately, electronic devices are sensitive to disturbances, and thus, industrial loads become less tolerant to power quality problems such as sags, swells, and harmonics. Voltage sags are an important power quality problem. In this paper proposed a new configuration of Static Var Compensator (SVC) considering three different conditions named as topologies and Booster transformer with fuzzy logic based controller, capable of compensating for power quality problems associated with voltage sags and maintaining a prescribed level of voltage profile. Fuzzy logic controller is designed to achieve the firing angles for SVC such that it maintains voltage profile. The online monitoring system for voltage sag mitigation in the laboratory using the hardware is used. The results are presented from the performance of each topology and Booster transformer considered in this paper.

Keywords: Booster Transformer, Fuzzy logic, Static Var Compensator, Voltage sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
722 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
721 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
720 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
719 A Comprehensive Study on Phytoextractive Potential of Sri Lankan Mustard (Brassica Juncea (L.) Czern. and Coss) Genotypes

Authors: S. Somaratne, S. R. Weerakoon

Abstract:

Heavy metal pollution is an environmental concern. Phytoremediation is a low-cost, environmental-friendly approach to solve this problem. Mustard has the potential in reducing heavy metal contents in soils. Among mustard (Brassica juncea (L.) Czern & Coss) genotypes in Sri Lanka, accessions 7788, 8831 and 5088 give significantly a high yield. Therefore, present study was conducted to quantify the phytoextractive potential among these local mustard accessions and to assess the interaction of heavy metals, Pb, Co, Mn on phytoextraction. A pot experiment was designed with acid washed sand (quartz) and a series of heavy metal solutions of 0, 25, 50, 75 and 100 μg/g. Experiment was carried out with factorial experimental design. Mustard accessions were tolerant to heavy metals and could be successfully used in removal of Pb, Co and Mn and they are capable of accumulating significant quantities of heavy metals in vegetative and reproductive organs. The order of the accumulative potential of Pb, Co and Mn in mustard accessions is, root > shoot >seed.

Keywords: Brassica juncea, heavy metal hyper-accumulation, phytoremediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
718 Application of Artificial Intelligence Techniques for Dissolved Gas Analysis of Transformers-A Review

Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta

Abstract:

The gases generated in oil filled transformers can be used for qualitative determination of incipient faults. The Dissolved Gas Analysis has been widely used by utilities throughout the world as the primarily diagnostic tool for transformer maintenance. In this paper, various Artificial Intelligence Techniques that have been used by the researchers in the past have been reviewed, some conclusions have been drawn and a sequential hybrid system has been proposed. The synergy of ANN and FIS can be a good solution for reliable results for predicting faults because one should not rely on a single technology when dealing with real–life applications.

Keywords: Dissolved Gas Analysis, Artificial IntelligenceTechniques, Incipient Faults, Transformer Fault Diagnosis, andHybrid Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4068
717 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
716 A New Self-stabilizing Algorithm for Maximal 2-packing

Authors: Zhengnan Shi

Abstract:

In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.

Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
715 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
714 Applicability of Diatom-Based Water Quality Assessment Indices in Dari Stream, Isparta- Turkey

Authors: Hasan Kalyoncu, Burcu Şerbetci

Abstract:

Diatoms are an important group of aquatic ecosystems and diatom-based indices are increasingly becoming important tools for the assessment of ecological conditions in lotic systems. Although the studies are very limited about Turkish rivers, diatom indices were used for monitoring rivers in different basins. In the present study, we used OMNIDIA program for estimation of stream quality. Some indices have less sensitive (IDP, WAT, LOBO, GENRE, TID, CEE, PT), intermediate sensitivities (IDSE, DESCY, IPS, DI-CH, SLA, IDAP), the others higher sensitivities (SID, IBD, SHE, EPI-D). Among the investigated diatom communities, only a few taxa indicated alfa-mesosaprobity and polysaprobity. Most of the sites were characterized by a great relative contribution of eutraphent and tolerant ones as well as oligosaprobic and betamesosaprobic diatoms. In general, SID and IBD indices gave the best results. This study suggests that the structure of benthic diatom communities and diatom indices, especially SID, can be applied for monitoring rivers in Southern Turkey. 

Keywords: Diatom, Darı stream, OMNIDIA, Turkey, Water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924
713 Optimization for Reducing Handoff Latency and Utilization of Bandwidth in ATM Networks

Authors: Pooja, Megha Kulshrestha, V. K. Banga, Parvinder S. Sandhu

Abstract:

To support mobility in ATM networks, a number of technical challenges need to be resolved. The impact of handoff schemes in terms of service disruption, handoff latency, cost implications and excess resources required during handoffs needs to be addressed. In this paper, a one phase handoff and route optimization solution using reserved PVCs between adjacent ATM switches to reroute connections during inter-switch handoff is studied. In the second phase, a distributed optimization process is initiated to optimally reroute handoff connections. The main objective is to find the optimal operating point at which to perform optimization subject to cost constraint with the purpose of reducing blocking probability of inter-switch handoff calls for delay tolerant traffic. We examine the relation between the required bandwidth resources and optimization rate. Also we calculate and study the handoff blocking probability due to lack of bandwidth for resources reserved to facilitate the rapid rerouting.

Keywords: Wireless ATM, Mobility, Latency, Optimization rateand Blocking Probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
712 Optimal Assessment of Faulted Area around an Industrial Customer for Critical Sag Magnitudes

Authors: Marios N. Moschakis

Abstract:

This paper deals with the assessment of faulted area around an industrial customer connected to a particular electric grid that will cause a certain sag magnitude on this customer. The faulted (critical or exposed) area’s length is calculated by adding all line lengths in the neighborhood of the critical node (customer). The applied method is the so-called Method of Critical Distances. By using advanced short-circuit analysis, the Critical Area can be accurately calculated for radial and meshed power networks due to all symmetrical and asymmetrical faults. For the demonstration of the effectiveness of the proposed methodology, a study case is used.

Keywords: Critical area, fault-induced voltage sags, industrial customers, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
711 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
710 Increasing Replica Consistency Performances with Load Balancing Strategy in Data Grid Systems

Authors: Sarra Senhadji, Amar Kateb, Hafida Belbachir

Abstract:

Data replication in data grid systems is one of the important solutions that improve availability, scalability, and fault tolerance. However, this technique can also bring some involved issues such as maintaining replica consistency. Moreover, as grid environment are very dynamic some nodes can be more uploaded than the others to become eventually a bottleneck. The main idea of our work is to propose a complementary solution between replica consistency maintenance and dynamic load balancing strategy to improve access performances under a simulated grid environment.

Keywords: Consistency, replication, data grid, load balancing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
709 Pollution Induced Community Tolerance(PICT) of Microorganisms in Soil Incubated with Different Levels of PB

Authors: N. Aliasgharzad, A. Molaei, S. Oustan

Abstract:

Soil microbial activity is adversely affected by pollutants such as heavy metals, antibiotics and pesticides. Organic amendments including sewage sludge, municipal compost and vermicompost are recently used to improve soil structure and fertility. But, these materials contain heavy metals including Pb, Cd, Zn, Ni and Cu that are toxic to soil microorganisms and may lead to occurrence of more tolerant microbes. Among these, Pb is the most abundant and has more negative effect on soil microbial ecology. In this study, Pb levels of 0, 100, 200, 300, 400 and 500 mg Pb [as Pb(NO3)2] per kg soil were added to the pots containing 2 kg of a loamy soil and incubated for 6 months at 25°C with soil moisture of - 0.3 MPa. Dehydrogenase activity of soil as a measure of microbial activity was determined on 15, 30, 90 and 180 days after incubation. Triphenyl tetrazolium chloride (TTC) was used as an electron acceptor in this assay. PICTs (€IC50 values) were calculated for each Pb level and incubation time. Soil microbial activity was decreased by increasing Pb level during 30 days of incubation but the induced tolerance appeared on day 90 and thereafter. During 90 to 180 days of incubation, the PICT was gradually developed by increasing Pb level up to 200 mg kg-1, but the rate of enhancement was steeper at higher concentrations.

Keywords: Induced tolerance, soil microorganisms, Pb, PICT, pollutants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
708 Biplot Analysis for Evaluation of Tolerance in Some Bean (Phaseolus vulgaris L.) Genotypes to Bean Common Mosaic Virus (BCMV)

Authors: S. Ghasemi, M. M. Kamelmanesh, A. Namayandeh, R. Biabanikhankahdani

Abstract:

The common bean is the most important grain legume for direct human consumption in the world and BCMV is one of the world's most serious bean diseases that can reduce yield and quality of harvested product. To determine the best tolerance index to BCMV and recognize tolerant genotypes, 2 experiments were conducted in field conditions. Twenty five common bean genotypes were sown in 2 separate RCB design with 3 replications under contamination and non-contamination conditions. On the basis of the results of indices correlations GMP, MP and HARM were determined as the most suitable tolerance indices. The results of principle components analysis indicated 2 first components totally explained 98.52% of variations among data. The first and second components were named potential yield and stress susceptible respectively. Based on the results of BCMV tolerance indices assessment and biplot analysis WA8563-4, WA8563-2 and Cardinal were the genotypes that exhibited potential seed yield under contamination and noncontamination conditions.

Keywords: Phaseolus vulgaris, BCMV, principle components analysis, bi-plot analysis, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
707 Modeling and Simulation of Dynamic Voltage Restorer for Mitigation of Voltage Sags

Authors: S. Ganesh, L. Raguraman, E. Anushya, J. krishnasree

Abstract:

Voltage sags are the most common power quality disturbance in the distribution system. It occurs due to the fault in the electrical network or by the starting of a large induction motor and this can be solved by using the custom power devices such as Dynamic Voltage Restorer (DVR). In this paper DVR is proposed to compensate voltage sags on critical loads dynamically. The DVR consists of VSC, injection transformers, passive filters and energy storage (lead acid battery). By injecting an appropriate voltage, the DVR restores a voltage waveform and ensures constant load voltage. The simulation and experimental results of a DVR using MATLAB software shows clearly the performance of the DVR in mitigating voltage sags.

Keywords: Dynamic voltage restorer, Voltage sags, Power quality, Injection methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4287
706 The Mediating Role of Level of Education and Income on the Relationship between Political Ideology and Attitude towards Immigration

Authors: Zohreh Bang Tavakoli, Shuktika Chatterjee

Abstract:

This study is investigating the impact of ideological structures in terms of conservative and liberal on shaping immigration acceptance attitudes under the contribution of socio-economic status. According to motivated reasoning theory, political ideology is identified as a recurrent impact on the formation of attitude, while conservatives tend to express more hostility toward immigrants in comparison to liberals which are proposed to be more tolerant towards immigrants. Our finding suggests that political ideology will structure individual attitudes when citizens socio-economic vulnerability and level of education are low enough to consider immigrants as a threat. Therefore, economic vulnerability is proposed to weaken the ideological predispositions’ resistance. There has been some threats and factors such as level of education and economic condition proposed by group competition theory and labor market competition theory as fundamental factors which can strengthen or weaken the effects of political ideology on individuals’ attitudes towards immigration; those mechanisms for liberals and conservatives will be operated differently.

Keywords: Conservative, immigration, liberal, political ideology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
705 Analysis of the Energetic Feature of the Loaded Gait with Variation of the Trunk Flexion Angle

Authors: Ji-il Park, Hyungtae Seo, Jihyuk Park, Kwang jin Choi, Kyung-Soo Kim, Soohyun Kim

Abstract:

The purpose of the research is to investigate the energetic feature of the backpack load on soldier’s gait with variation of the trunk flexion angle. It is believed that the trunk flexion variation of the loaded gait may cause a significant difference in the energy cost which is often in practice in daily life. To this end, seven healthy Korea military personnel participated in the experiment and are tested under three different walking postures comprised of the small, natural and large trunk flexion. There are around 5 degree differences of waist angle between each trunk flexion. The ground reaction forces were collected from the force plates and motion kinematic data are measured by the motion capture system. Based on these data, the impulses, momentums and mechanical works done on the center of body mass (COM) during the double support phase were computed. The result shows that the push-off and heel strike impulse are not relevant to the trunk flexion change, however the mechanical work by the push-off and heel strike were changed by the trunk flexion variation. It is because the vertical velocity of the COM during the double support phase is increased significantly with an increase in the trunk flexion. Therefore, we can know that the gait efficiency of the loaded gait depends on the trunk flexion angle. Also, even though the gravitational impulse and pre-collision momentum are changed by the trunk flexion variation, the after-collision momentum is almost constant regardless of the trunk flexion variation.

Keywords: Loaded gait, collision, impulse, gravity, heel strike, push-off, gait analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
704 Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm

Authors: Chen Wu, Jingyu Yang

Abstract:

Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.

Keywords: rough set, incomplete decision table, maximalconsistent block, default definite decision rule, join and meet block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
703 Concept of Automation in Management of Electric Power Systems

Authors: Richard Joseph, Nerey Mvungi

Abstract:

An electric power system includes a generating, a transmission, a distribution, and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.

Keywords: Automation, Distribution subsystem, Generating subsystem, PSS/E, TANESCO, Transmission subsystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609
702 A New Efficient Scalable BIST Full Adder using Polymorphic Gates

Authors: M. Mashayekhi, H. H. Ardakani, A. Omidian

Abstract:

Among various testing methodologies, Built-in Self- Test (BIST) is recognized as a low cost, effective paradigm. Also, full adders are one of the basic building blocks of most arithmetic circuits in all processing units. In this paper, an optimized testable 2- bit full adder as a test building block is proposed. Then, a BIST procedure is introduced to scale up the building block and to generate a self testable n-bit full adders. The target design can achieve 100% fault coverage using insignificant amount of hardware redundancy. Moreover, Overall test time is reduced by utilizing polymorphic gates and also by testing full adder building blocks in parallel.

Keywords: BIST, Full Adder, Polymorphic Gate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
701 The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits

Authors: Violina R. Angelova, Sava G. Tabakov, Aleksander B. Peltekov, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.

Keywords: Aronia, chemical composition, fruits, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
700 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730