Search results for: Linear predictive coding
1653 A Broadcasting Strategy for Interactive Video-on-Demand Services
Authors: Yu-Wei Chen, Li-Ren Han
Abstract:
In this paper, we employ the approach of linear programming to propose a new interactive broadcast method. In our method, a film S is divided into n equal parts and broadcast via k channels. The user simultaneously downloads these segments from k channels into the user-s set-top-box (STB) and plays them in order. Our method assumes that the initial p segments will not have fast-forwarding capabilities. Every time the user wants to initiate d times fast-forwarding, according to our broadcasting strategy, the necessary segments already saved in the user-s STB or are just download on time for playing. The proposed broadcasting strategy not only allows the user to pause and rewind, but also to fast-forward.Keywords: Broadcasting, Near Video-on-Demand (VOD), Linear Programming, Video-Cassette-Recorder (VCR) Functions, Waiting Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471652 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland
Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli
Abstract:
This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.Keywords: Analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6461651 A Linear Use Case Based Software Cost Estimation Model
Authors: Hasan.O. Farahneh, Ayman A. Issa
Abstract:
Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.
Keywords: Metrics, Software Cost Estimation, Use Cases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20121650 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering
Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song
Abstract:
The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.
Keywords: Contour filtering, linear array, photoacoustic tomography, universal back projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18391649 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research were obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in 2019-2021 was also calculated using a chosen method – a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.
Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021648 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.
Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9031647 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence
Authors: Francesca Radice
Abstract:
It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.
Keywords: Sentiment Analysis, data mining, predictive policing, virtual manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531646 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen
Abstract:
In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.
Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651645 LQG Flight Control of VTAV for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a linear-quadratic-Gaussian (LQG) flight control procedure for an unmanned helicopter model with vectored thrust configuration. This LQG control for chosen model of VTAV has been verified by simulation of take-off and landing maneuvers using software package Simulink and demonstrated good performance for fast flight stabilization of model, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Linear-Quadratic-Gaussian (LQG) controller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331644 Constrained Particle Swarm Optimization of Supply Chains
Authors: András Király, Tamás Varga, János Abonyi
Abstract:
Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20751643 Balanced and Unbalanced Voltage Sag Mitigation Using DSTATCOM with Linear and Nonlinear Loads
Authors: H. Nasiraghdam, A. Jalilian
Abstract:
DSTATCOM is one of the equipments for voltage sag mitigation in power systems. In this paper a new control method for balanced and unbalanced voltage sag mitigation using DSTATCOM is proposed. The control system has two loops in order to regulate compensator current and load voltage. Delayed signal cancellation has been used for sequence separation. The compensator should protect sensitive loads against different types of voltage sag. Performance of the proposed method is investigated under different types of voltage sags for linear and nonlinear loads. Simulation results show appropriate operation of the proposed control system.Keywords: Custom power, power quality, voltage sagmitigation, current vector control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28361642 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.
Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661641 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System
Authors: Ayad Al-Mahturi, Herman Wahid
Abstract:
This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21371640 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization
Authors: Kazuo Komatsu, Hitoshi Takata
Abstract:
This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941639 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes
Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi
Abstract:
Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.Keywords: Nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22481638 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.
Keywords: Adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11231637 State of Charge Estimator Based On High-Gain Observer for Lithium-Ion Batteries
Authors: Jaeho Han, Moonjung Kim, Won-Ho Kim, Chang-Ho Hyun
Abstract:
This paper introduces a high-gain observer based state of charge(SOC) estimator for lithium-Ion batteries. The proposed SOC estimator has a high-gain observer(HGO) structure. The HGO scheme enhances the transient response speed and diminishes the effect of uncertainties. Furthermore, it guarantees that the output feedback controller recovers the performance of the state feedback controller when the observer gain is sufficiently high. In order to show the effectiveness of the proposed method, the linear RC battery model in ADVISOR is used. The performance of the proposed method is compared with that of the conventional linear observer(CLO) and some simulation result is given.
Keywords: SOC, high-gain, observer, uncertainties, robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15521636 A New Face Recognition Method using PCA, LDA and Neural Network
Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani
Abstract:
In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32131635 Subjective Assessment about Super Resolution Image Resolution
Authors: Seiichi Gohshi, Hiroyuki Sekiguchi, Yoshiyasu Shimizu, Takeshi Ikenaga
Abstract:
Super resolution (SR) technologies are now being applied to video to improve resolution. Some TV sets are now equipped with SR functions. However, it is not known if super resolution image reconstruction (SRR) for TV really works or not. Super resolution with non-linear signal processing (SRNL) has recently been proposed. SRR and SRNL are the only methods for processing video signals in real time. The results from subjective assessments of SSR and SRNL are described in this paper. SRR video was produced in simulations with quarter precision motion vectors and 100 iterations. These are ideal conditions for SRR. We found that the image quality of SRNL is better than that of SRR even though SRR was processed under ideal conditions.Keywords: Super Resolution Image Reconstruction, Super Resolution with Non-Linear Signal Processing, Subjective Assessment, Image Quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16951634 Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique
Authors: J.V.R.Ravindra, M.B.Srinivas,
Abstract:
Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.Keywords: Model order Reduction, RLC, crosstalk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521633 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.
Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21331632 Investigation of Heating Behaviour of E-textile Structures
Authors: H. Sezgin, S. Kursun Bahadır, Y. E. Boke, F. Kalaoğlu
Abstract:
By textile science incorporating with electronic industry, developed textile products start to take part in different areas such as industry, military, space, medical etc. for health, protection, defense, communication and automation. Electronic textiles (e-textiles) are fabrics that contain electronics and interconnections with them. In this study, two types of base yarns (cotton and acrylic) and three types of conductive steel yarns with different linear resistance values (14Ω/m, 30Ω/m, 70Ω/m) were used to investigate the effect of base yarn type and linear resistance of conductive yarns on thermal behavior of e-textile structures. Thermal behavior of samples was examined by thermal camera.
Keywords: Conductive yarn, e-textiles, smart textiles, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23411631 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems
Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil
Abstract:
Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.
Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27221630 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: Frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13121629 Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter
Authors: Kavala Kiran Kumar, R. Govardhana Rao
Abstract:
Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.
Keywords: Active power filters (APF), Fuzzy logic controller (FLC), Hysteresis current controller (HCC), PID, Total harmonic Distortion (THD), Voltage source inverter (VSI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25311628 Angles of Arrival Estimation with Unitary Partial Propagator
Authors: Youssef Khmou, Said Safi
Abstract:
In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem. Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA).
Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Backward Partial Propagator (FBPP) and Unitary Propagator (UP). The results demonstrates that when some of the sources are fully correlated and closer than the Rayleigh angular limit resolution of the broadside array, the UPP method outperforms the FBPP in both of spatial resolution and complexity.
Keywords: DOA, Uniform Linear Array, Narrowband, Propagator, Real valued transformation, Subspace, Unitary Operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22841627 Note to the Global GMRES for Solving the Matrix Equation AXB = F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.
Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18391626 An Approximate Solution of the Classical Van der Pol Oscillator Coupled Gyroscopically to a Linear Oscillator Using Parameter-Expansion Method
Authors: Mohammad Taghi Darvishi, Samad Kheybari
Abstract:
In this article, we are dealing with a model consisting of a classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. The major problem is analyzed. The regular dynamics of the system is considered using analytical methods. In this case, we provide an approximate solution for this system using parameter-expansion method. Also, we find approximate values for frequencies of the system. In parameter-expansion method the solution and unknown frequency of oscillation are expanded in a series by a bookkeeping parameter. By imposing the non-secularity condition at each order in the expansion the method provides different approximations to both the solution and the frequency of oscillation. One iteration step provides an approximate solution which is valid for the whole solution domain.
Keywords: Parameter-expansion method, classical Van der Pol oscillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18581625 Characteristics of Intronic and Intergenic Human miRNAs and Features of their Interaction with mRNA
Authors: Assel S. Issabekova, Olga A. Berillo, Vladimir A. Khailenko, Shara A. Atambayeva, Mireille Regnier, Anatoly T. Ivachshenko
Abstract:
Regulatory relationships of 686 intronic miRNA and 784 intergenic miRNAs with mRNAs of 51 intronic miRNA coding genes were established. Interaction features of studied miRNAs with 5'UTR, CDS and 3'UTR of mRNA of each gene were revealed. Functional regions of mRNA were shown to be significantly heterogenous according to the number of binding sites of miRNA and to the location density of these sites.
Keywords: 5'UTR, 3'UTR, CDS, miRNA, target mRNA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17051624 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System
Authors: Ahmed Bensenouci
Abstract:
This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055