

Abstract—Software development is moving towards agility

with use cases and scenarios being used for requirements stories.
Estimates of software costs are becoming even more important
than before as effects of delays is much larger in successive short
releases context of agile development. Thus, this paper reports on
the development of new linear use case based software cost
estimation model applicable in the very early stages of software
development being based on simple metric. Evaluation showed that
accuracy of estimates varies between 43% and 55% of actual effort
of historical test projects. These results outperformed those of well-
known models when applied in the same context. Further work is
being carried out to improve the performance of the proposed
model when considering the effect of non-functional requirements.

Keywords—Metrics, Software Cost Estimation, Use Cases

I. INTRODUCTION
DEALLY, software development projects should start
with a feasibility study to estimate the effort and time

required to deliver an operational system. Unfortunately,
this is not the case in most software development projects
for a number of reasons [7], and most importantly the
unavailability of software cost estimation models that fit the
different software development environments in the early
stages of the software development life cycle.

The inherent problem with cost estimation is that small
projects can be easily estimated, but the required accuracy
may not be very important. On the other hand, large
projects are very difficult to estimate, but the required
accuracy is greater than what is normally achieved [6].
Different factors contribute to the inaccuracy of software
cost estimation, such as, imprecise and drifting
requirements, not enough information readily available on
past projects, and algorithms that were developed and
trained on specific data do not easily transfer to other
environments [7].

Several requirements elicitation techniques have been
used to model and specify user and system requirements.
The linear use case modelling is one of these techniques and
has been used observable result of value to a particular
actor” [10].

Furthermore, use case models have become a common
system model between all software systems stakeholders
[10].

Thus, having requirements for a software system
elicited, modelled, and initially specified using a use case

Hasan .O.Farahneh , Electrical Engineering Department, Faculty of
Engineering and Technology University of Jordan Amman Jordan
h.farahneh@ju.edu.jo
Ayman A. Issa ,Software Engineering Department, Faculty of Information
Technology, Philadelphia University P.O. Box 1, Amman. 19392, Jordan
aissa@philadelphia.edu.jo

model raises a number of questions that formed the main
motivation behind this research:

1) Can a use case model be utilised as an appropriate
platform to predict the size of an anticipated
software system?

2) Consequently, can this predicted system size (based
on its use case model) be utilised in developing use
case model based software cost estimation models
that can be used as a basis to estimate the software
development effort?

3) To what extent can this predicted effort be accurate
in the early stages of software development?

4) What external factors affect the accuracy of use
case based estimates?

Section II. surveys the use case-based software cost
estimation literature. The proposed linear use case-based
estimation model is presented in section 3. Section 4
critically evaluates the accuracy of the proposed model.
Finally, the conclusion and the outline of future work are
presented in section 5.

II. USE CASE MODEL BASED SOFTWARE COST ESTIMATION
The software cost estimation literature describes

numerous use case model based estimation models and
methods. Karner [9], as detailed in section 2.1, developed
the Use Case Points (UCP) method that utilises the
identified actors and use cases to size and estimate software
development projects. Smith [8], as detailed in section 2.2,
proposed another hierarchal approach to translate use cases
into equivalent Lines Of Code (LOC) and used it as an input
to a LOC dependent estimation model to predict the required
effort and time. Issa’s approach of use case based software
cost estimation is summarized in section 2.3.

A. Use Cases Points
UCP is a software sizing and estimation method based

on use case model. The calculation of the final UCP count
for a given application is accomplished in two steps. First,
the Unadjusted UCP (UUCP) count is calculated based on
the unadjusted weighted actors and use cases. Then, the
Adjusted UCP (AUCP) count is calculated by adjusting the
UUCP count using technical complexity and environment
adjustment factors.

The UUCP represents the sum of the Unadjusted Actor
Weights (UAW) and Unadjusted Use Case Weights
(UUCW). The UAW depends on the actor types and
complexity weights. Karner identified three actor types:
simple, average, and complex. The simple actor represents
another system with a defined application programming
interface. The average actor represents another system
interfacing through a protocol such as TCP/IP. The complex

A Linear Use Case Based Software Cost
Estimation Model

Hasan.O. Farahneh, Ayman A. Issa

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:1, 2011

31International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

1,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
01

.p
df

http://waset.org/publication/A-Linear-Use-Case-Based-Software-Cost-Estimation-Model/12301

actor represents a person interacting through a graphical
user interface or a web page. The UAW is calculated by
multiplying the number of each actor type by its weight, as
summarised in table I, and summing to give the total. The
UUCW depends on the use case types and complexity
weights. Karner identified three use case types: simple,
average, and complex. The use case type is determined by
the number of transactions within the use case scenarios.
The use case types, number of transactions per use case
type, and complexity weights are defined in table II. The
UUCW is calculated by multiplying the number of each use
case type by its weight and then summing to obtain the total.

The Technical Complexity Adjustment Factor (TCAF)
and Environment Factor (EF) consist of 13 and 9 sub-
factors, respectively. Each sub-factor has a weight according
to how it affects productivity. Tables III and IV summarise
the TCAF and EF sub-factors, respectively, and their
weights. Each sub-factor is assigned a value between 0 (no
influence) and 5 (strong influence) to represent its effect,
then the effect of each sub-factor is multiplied by its weight
and all the numbers are summed to form the TFactor and
EFactor, respectively. TCAF is then calculated as:

)01.0(6.0 TFactorTCAF ×+= , whereas EF is calculated as:
)3.0(3.1 EFactorEF ×−+= . Finally, the AUCP is

calculated as: EFTCAFUUCPAUCP ××= . For a project
estimate, Karner [9] proposed 20 staff hours per UCP. Other
field studies [3] showed that effort can range between 15-30
staff hours per UCP.

B. Rationale’s use case effort estimation
Smith [8] assumed that each software solution has a

structural hierarchy consisting of the following levels:
system of systems, system(s), subsystem group,
subsystem(s), and class(es). Typically, use cases exist in all
levels except the class level and use cases at different levels
have different complexities. The method determines typical
adjacent factors between the architectural levels as detailed
in table V.

Having the system size calculated in LOC, by
propagating the adjacent factors of the architectural levels
defined in table V, COCOMO and Putnam’s models [4,6]
can be used to estimate the required development effort and
time

TABLE I UCP ACTOR TYPES AND COMPLEXITY WEIGHTS
Actor Type Complexity Weighting Factor
Simple 1
Average 2
Complex 3

TABLE II UCP ACTOR TYPES AND COMPLEXITY WEIGHTS
Use Case Type No. of Transactions Complexity

Simple <= 3 1
Average 4 to 7 2
Complex >= 7 3

TABLE III UCP TECHNICAL COMPLEXITY FACTORS
Technical Factor Weight
Distributed System 2
Response Objective 2

End User Efficiency 1
Complex Processing 1

Reusable Code 1
Easy to Install 0.5
Easy to Use 0.5
Portable 2

Easy to Change 1
Concurrent 1

Security Features 1
Access for Third Parties 1
Special Training Required 1

 TABLE IV UCP ENVIRONMENT FACTORS
Environmental Factor Weight
Familiar with RUP 1.5

Application Experience 0.5
Object Oriented Experience 1
Lead Analyst Capability 0.5

Motivation 1
Stable Requirements 2

Part Time Workers ‐1
Difficult Programming Language 2

TABLE V SMITH’S ARCHITECTURAL LEVEL ADJACENT

FACTORS
Architectural Level Adjacent Factor
Operation Size 70 LOC

Number of operations per class 12
Number of classes per subsystem 8

Number of subsystems per
subsystem group

8

Number of subsystem group per
system

8

Number of subsystem group per
system

8

Number of systems per system
group

8

C. Object points extraction using use case model method
OP is one of the size metrics that fits the early

prototyping stages of software development. Also, OP was
developed to cope with the visual widgets of Fourth
Generation Languages (4GLs) and Integrated Computer
Aided Software Engineering (ICASE) environments [4]. OP
is mainly concerned with producing a reliable early count of
the application (object) points being the sum of the adjusted
number of screens, reports, and Third Generation Language
(3GL) modules that are expected to be developed to
supplement the 4GL code. Moreover, OPs do not relate to
object oriented concepts such as inheritance, encapsulation,
etc. but are more closely dependent on the user interface of
the system being developed.

A use case model of an anticipated system describes who
will use the system, user-system interaction scenarios, and
the interrelationship between them [10]. These user-system
interaction scenarios represent the main input to create the
system user interface prototypes. Several methods and
techniques have been developed to derive, model, and
design user interface from use case models such as object
modelling and user interface design [5]. Thus, this method
investigates the applicability of use case models to count the
system OP [2]; and consequently, estimate the development
effort at an early stage in the software development life
cycle. The detailed rationale, workflow, and example of the
proposed OP extraction using use case model method are
presented in [2].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:1, 2011

32International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

1,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
01

.p
df

http://waset.org/publication/A-Linear-Use-Case-Based-Software-Cost-Estimation-Model/12301

Although several studies [3] aimed at synthesising the
above use case model-based estimation methods, more
knowledge is needed about the contexts in which they can
be applied and how it could be adapted to local
environments to improve the estimation process. In addition,
the effect of other use case model attributes (e.g. use case
relationships, preconditions, and postconditions) on their
estimate’s accuracy needs to be investigated [4]. More
importantly, the literature does not seem to have any trace of
validation of their accuracy in the different phases of the
diverse software development life cycles. Also, it is
apparent that most of the proposed approaches cannot be
applied in the early stages of software development when
estimation is needed for feasibility studies purposes.
Therefore, this research builds on the above software cost
estimation methods to investigate the applicability and
reliability of use case model, being a common system model
between the different stakeholders in the most recent
software development life cycles, as a basis for software
cost estimation in the very early stages of software
development.

III. THE PROPOSED LINEAR MODEL
A multi-phase Function Points (FP) to Object Points

(OP) conversion approach has been proposed to infer the OP
information for 66 ISBSG multi-organizational historical
projects [1]. Consequently, the reliability of the defined FP-
OP relationship has been evaluated by assessing the
resulting OP attributes against the actual ISBSG FP and
effort attributes. The evaluation of the conversion approach
empirical results showed high correlation, 88%, between the
OP estimated and FP actual efforts that generally supports
the reliability of the defined FP-OP elements mapping and
consumption schemes. Furthermore, a high correlation,
87%, has been found between the calculated AOP and
unadjusted/adjusted FP. Further work has been carried out to
integrate the resulting FP-OP conversion models with earlier
work [2] to build use case based historical projects database.

The resulted use case historical projects database is then
utilized in an independent study devoted to investigate the
relationship between the actual effort and the resulted
number of Use Cases (UC) for each project. This has led the
research team to discover a hidden relationship between
them. It has been found that the ISBSG actual effort is
highly correlated, 94%, to the number of UCs. Hence, the
fitness, R2, of several multiple regression linear and
exponential models to represent the relationship between
them has been investigated. It has been found that both types
of models have similar fitness in the corresponding
experiments data. Therefore, linear models of general form:

Effort = (Cons1 * NoOfUCs) + (Cons2 * Z1)

 + (Cons3 * Z2) + (Cons4 * Z3)
 + (Cons5 * Z4) + Cons6

have been used to represent the relationship between the
ISBSG actual effort and number of UCs where Z1, Z2, Z3,
and Z4 are project size and programming language
generation indicator variables as summarized in table VI.
Correspondingly, table VII summarizes the parameters of
the resulting models in the different experiments data.
Experiment performed on basis of three points estimates
approach.

 TABLEVI PROJECT SIZE AND PROGRAMMING LANGUAGE

GENERATION INDICATORS
Indicator Variable Value Productivity Factor

Z1 0 or 1 Small Size Project
Z2 0 or 1 Medium Size Project
Z3 0 or 1 Third Generation

Language Project
Z4 0 or 1 Fourth Generation

Language Project

IV. CRITICAL AND COMPARATIVE EVALUATION
The validation of the proposed linear use case based

estimation model has been performed using the FP-OP-UC
projects data. First, three points, worst, expected, and best
estimates have been adopted to utilise the use case converted
data to estimate the effort of the corresponding projects
using the proposed model. Consequently, the generated
estimates have been evaluated to assess the overall accuracy
and reliability of the proposed model compared to the actual
effort and established software cost estimation models [4,6],
respectively.

The recommended algorithmic models to be used in the
literature are summarized in table VIII based on the
performed statistical studies reported in table VII.
Correspondingly, the curve fitness of the recommended
worst, best and, expected case models are depicted in figures
1, 2, and 3, respectively.

Table IX depicts the results of a sample experiment that
evaluates the proposed model. It has been found that the
range of this initial estimate varies from 43% to 55% of the
actual effort. This error percentage at the early stages of
software development is compared with other well-known
models, e.g. COCOMO II, that tend to generate estimates
with ± 400% error percentage in such early stages of the
software development life cycle [4]. The low level
performance investigation of the embodied size and
generation of programming language showed that the higher
the generation of programming language used, the more
accurate the effort estimate.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:1, 2011

33International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

1,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
01

.p
df

http://waset.org/publication/A-Linear-Use-Case-Based-Software-Cost-Estimation-Model/12301

TABLE VII ALGORITHMIC NUMBER OF USE CASES BASED SCE MODELS
 Cons1 Cons2 Cons3 Cons4 Cons5 Cons6 R R2 t

Experiment 1

Worst Case
Estimate 1.47 26.44 18.34 -26.75 -28.54 7.72 0.93 0.87 9.64

Best Case
Estimate 1.51 34.5 18.99 -13.42 -21.06 -11.98 0.96 0.92 13.24

Expected
Case
Estimate

1.56 33.93 20.61 -12.37 -18.54 -12.79 0.95 0.91 12.11

Experiment 2

Worst Case
Estimate 1.48 27.83 19.44 -24.86 -26.59 5.45 0.93 0.87 9.43

Best Case
Estimate 1.51 34.93 19.23 -12.82 -20.55 -12.73 0.96 0.91 13.19

Expected
Case
Estimate

1.58 35.11 21.44 -10.47 -16.78 -15.30 0.95 0.90 11.99

Expérimente
3

Worst Case
Estimate 1.64 28.05 18.41 -31.18 -34.67 10.21 0.93 0.87 9.39

Best Case
Estimate 1.51 34.5 18.99 -13.42 -21.06 -11.98 0.96 0.92 13.24

Expected
Case
Estimate

1.65 34.70 20.39 -14.67 -21.69 -11.34 0.95 0.90 11.97

Experiment 4

Worst Case
Estimate 1.65 29.42 19.49 -29.37 -32.81 8.05 0.93 0.86 9.18

Best Case
Estimate 1.51 34.93 19.23 -12.82 -20.55 -12.73 0.96 0.91 13.19

Expected
Case
Estimate

1.65 35.59 21.16 -13.27 -20.28 -13.10 0.95 0.90 11.85

TABLEVIII RECOMMENDED ALGORITHMIC NUMBER OF USE CASES BASED MODELS

Estimation
Type

Algorithmic Model

Worst Case
Estimate

Effort = (1.47 × NofUCs) + (26.44 × Z1) + (18.34 × Z2) + (-26.75 × Z3) + (-28.54 × Z4) + 7.72

Best Case
Estimate

Effort = (1.51 × NofUCs) + (34.5 × Z1) + (18.99 × Z2) + (-13.42 × Z3) + (-21.06 × Z4) - 11.98

Expected Case
Estimate

Effort = (1.56 × NofUCs) + (33.93 × Z1) + (20.61 × Z2) + (-12.37 × Z3) + (-18.54 × Z4) – 12.79

No. of UCs

Actual Effort

4003002001000-100

200

100

0

-100

Observed

Linear

No. of UCs

Actual Effort

4003002001000-100

200

100

0

-100

Observed

Linear

 Fig.1 Worst Case Estimate Curve Fitness. Fig.2 Best Case Estimate Curve Fitness.

No. of UCs

Actual Effort

4003002001000-100

200

100

0

-100

Observed

Linear

Fig. 3 Expected Case Estimate Curve Fitness.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:1, 2011

34International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

1,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
01

.p
df

http://waset.org/publication/A-Linear-Use-Case-Based-Software-Cost-Estimation-Model/12301

V. SUMMARY, CONCLUSION, AND FUTURE WORK
In an effort to investigate the appropriateness of use case

models as a platform for accurate software cost estimation in
the early stages of the software development life cycle, the
number of use cases metric has been successfully used to
develop new linear model as basis for providing an early yet
rough estimation of the software development effort. In
particular, the proposed approach has demonstrated the
ability to generate early software cost estimates with an
accuracy of approximately ± 50% of the actual effort.

Hence, it may be concluded that the accuracy of
approximately 50% of the actual effort in the proposed
model is superior to that of the well-known software cost
estimation models such as COCOMO II [4] and SLIM [6],
that were reported to generate estimates of 400% and 771%,
respectively, of the actual effort when applied in the early
stages of software development.

Finally, future extensions of the proposed linear use case
model based software cost estimation model are planned to
consider the effect of the diverse non-functional
requirements on the resulted effort estimates.

REFERENCES
[1] A. Issa, M. Odeh, and D. Coward, “Can Function Points Be Mapped

To Object Points?” International Arab Journal of Information
Technology, (Accepted and to appear).

[2] A. Issa, M. Odeh, and D. Coward, “Using Use Case Models To
Generate Object Points.” In Proceedings of the IASTED International
Conference on Software Engineering Austria. ACTA Press, 2005,
pp.468-473.

[3] B. Anda, E. Angelvik, and K. Ribu, “Improving Estimation Practices
by Applying Use Case Models.” In Proceedings Product Focused
Software Process Improvement 4th International Conference,
PROFES 2002.,9-11 Dec Rovaniemi, Finland Springer-Verlag, 2002,
pp. 383-397.

[4] Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B., Steece,
B., Brown, A., Chulani, S. and Abts, C., Software Cost Estimation
With Cocomo II. Prentice Hall, 2000.

[5] C. Phillips, E. Kemp, and Sai Mei Kek, “Extending UML Use Case
Modelling to Support Graphical User Interface Design.” In
Proceedings of the 2001 Australian Software Engineering
Conference, 27-28 Aug. 2001, Australia IEEE Comput. Soc, 2001,
pp.48-57.

[6] F. Heemstra, “Software Cost Estimation.” Information and Software
Technology, 34 (10), 1992, pp.627-639.

[7] J. Lewis, “Limits to Software Estimation”, Software Engineering
Notes, 26 (4), 2001, p.54.

[8] J. Smith, “The Estimation of Effort Based on Use Cases” [online].
Rational Software, 2001, Available from:
http://www.rational.com/products /whitepapers/finalTP171.jsp
Accessed 1/15/2003.

[9] Karner, G., Resource Estimation for Objectory Projects. Objectory
Systems, 1993.

[10] Kruchten, P., The Rational Unified Process : an Introduction.
London: Addison-Wesley, 2002.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:1, 2011

35International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

1,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
01

.p
df

http://waset.org/publication/A-Linear-Use-Case-Based-Software-Cost-Estimation-Model/12301

