Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
An Approximate Solution of the Classical Van der Pol Oscillator Coupled Gyroscopically to a Linear Oscillator Using Parameter-Expansion Method

Authors: Mohammad Taghi Darvishi, Samad Kheybari

Abstract:

In this article, we are dealing with a model consisting of a classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. The major problem is analyzed. The regular dynamics of the system is considered using analytical methods. In this case, we provide an approximate solution for this system using parameter-expansion method. Also, we find approximate values for frequencies of the system. In parameter-expansion method the solution and unknown frequency of oscillation are expanded in a series by a bookkeeping parameter. By imposing the non-secularity condition at each order in the expansion the method provides different approximations to both the solution and the frequency of oscillation. One iteration step provides an approximate solution which is valid for the whole solution domain.

Keywords: Parameter-expansion method, classical Van der Pol oscillator.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1086007

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449

References:


[1] J.H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-linear Mech., 34(4) (1999) 699- 708.
[2] M.T. Darvishi, F. Khani, A.A. Soliman, The numerical simulation for stiff systems of ordinary differential equations, Comput. Math. Appl., 54(7-8) (2007) 1055-1063.
[3] M.T. Darvishi, F. Khani, Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations, Chaos, Solitons and Fractals, 39 (2009) 2484-2490.
[4] S. Abbasbandy, M.T. Darvishi, A numerical solution of Burgers- equation by modified Adomian method, Appl. Math. Comput., 163 (2005) 1265- 1272.
[5] S. Abbasbandy, M.T. Darvishi, A numerical solution of Burgers- equation by time discretization of Adomian-s decomposition method, Appl. Math. Comput., 170 (2005) 95-102.
[6] J.H. He, New interpretation of homotopy perturbation method, Int. J. Mod. Phys. B, 20(18) (2006) 2561-2568.
[7] M.T. Darvishi, F. Khani, Application of He-s homotopy perturbation method to stiff systems of ordinary differential equations, Zeitschrift fur Naturforschung A, 63a (1-2) (2008) 19-23.
[8] M.T. Darvishi, F. Khani, S. Hamedi-Nezhad, S.W. Ryu, New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine- Gordon equations, Int. J. Comput. Math., 87(4) (2010) 908-919.
[9] M.T. Darvishi, A. Karami, B.C. Shin, Application of He-s parameterexpansion method for oscillators with smooth odd nonlinearities, Phys. Lett. A, 372(33) (2008) 5381-5384.
[10] B.C. Shin, M.T. Darvishi, A. Karami, Application of He-s parameterexpansion method to a nonlinear self-excited oscillator system, Int. J. Nonlin. Sci. Num. Simul., 10(1) (2009) 137-143.
[11] M.T. Darvishi, S. Kheybari, A. Yildirim, Application of He-s Parameterexpansion Method to a System of Two van der Pol Oscillators Coupled via a Bath, Nonlin. Science Lett. A., 1(4) (2010) 399-405.
[12] M.T. Darvishi, S. Kheybari, Application of He-s parameter-expansion method to a coupled van der Pol oscillators with two kinds of time-delay coupling, International Journal of Mathematical and Computer Sciences, 7(4) (2011) 156-161.
[13] M.T. Darvishi, Preconditioning and domain decomposition schemes to solve PDEs, International Journal of Pure and Applied Mathematics, 1(4) (2004) 419-439.
[14] M.T. Darvishi, S. Kheybari, F. Khani, A numerical solution of the Korteweg-de Vries equation by pseudospectral method using Darvishi-s preconditionings, Appl. Math. Comput., 182(1) (2006) 98-105.
[15] M.T. Darvishi, New algorithms for solving ODEs by pseudospectral method, Journal of Applied Mathematics and Computing, 7(2) (2000) 319-331.
[16] M.T. Darvishi, F. Khani, S. Kheybari, Spectral collocation solution of a generalized Hirota-Satsuma KdV equation, Int. J. Comput. Math., 84(4) (2007) 541-551.
[17] M.T. Darvishi, F. Khani, S. Kheybari, Spectral collocation method and Darvishi-s preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simul., 13(10) (2008) 2091- 2103.
[18] S.J. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat Mass Transfer, 48 (2005) 2529- 2539.
[19] S.J. Liao, A general approach to get series solution of non-similarity boundary-layer flows, Commun. Nonlinear Sci. Numer. Simul., 14(5) (2009) 2144-2159.
[20] M.T. Darvishi, F. Khani, A series solution of the foam drainage equation, Comput. Math. Appl., 58 (2009) 360-368.
[21] A. Aziz, F. Khani, M.T. Darvishi, Homotopy analysis method for variable thermal conductivity heat flux gage with edge contact resistance, Zeitschrift fuer Naturforschung A, 65a(10) (2010) 771-776.
[22] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, Exact three-wave solutions for high nonlinear form of Benjamin-Bona-Mahony-Burgers equations, International Journal of Mathematical and Computer Sciences, 6(3) (2010) 127-131.
[23] M.T. Darvishi, Mohammad Najafi, Some exact solutions of the (2+1)- dimensional breaking soliton equation using the three-wave method, International Journal of Computational and Mathematical Sciences, 6(1) (2012) 13-16.
[24] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, New exact solutions for the (3+1)-dimensional breaking soliton equation, International Journal of Information and Mathematical Sciences, 6(2) (2010) 134-137.
[25] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, New application of EHTA for the generalized (2+1)-dimensional nonlinear evolution equations, International Journal of Mathematical and Computer Sciences, 6(3) (2010) 132-138.
[26] M.T. Darvishi, Mohammad Najafi, A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation, Chin. Phys. Lett., 28(4) (2011) art. no. 040202.
[27] M.T. Darvishi, Mohammad Najafi, Some complexiton type solutions of the (3+1)-dimensional Jimbo-Miwa equation, International Journal of Computational and Mathematical Sciences, 6(1) (2012) 25-27.
[28] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, Traveling wave solutions for the (3+1)-dimensional breaking soliton equation by (G G )- expansion method and modified F-expansion method, International Journal of Computational and Mathematical Sciences, 6(2) (2012) 64-69.
[29] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons and Fractals, 34 (2007) 1421-1429.
[30] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30(3) (2006) 700-708.
[31] J.H. He, X.H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solitons and Fractals, 29 (2006) 108-113.
[32] F. Khani, S. Hamedi-Nezhad, M.T. Darvishi, S.W. Ryu, New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method, Nonlin. Anal.: Real World Appl., 10 (2009) 1904- 1911.
[33] B.C. Shin, M.T. Darvishi, A. Barati, Some exact and new solutions of the Nizhnik-Novikov-Vesselov equation using the Exp-function method, Comput. Math. Appl., 58(11/12) (2009) 2147-2151.
[34] X.H. Wu, J.H. He, Exp-function method and its application to nonlinear equations, Chaos, Solitons and Fractals, 38(3) (2008) 903-910.
[35] J.H. He, Bookkeeping parameter in perturbation methods, Int. J. Nonlinear Sci. Numer. Simul., 2 (2001) 257-264.
[36] A. H. Nayfeh, Perturbation methods. JohnWiley and Sons, New York, NY, USA, 1973.