LQG Flight Control of VTAV for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a linear-quadratic-Gaussian (LQG) flight control procedure for an unmanned helicopter model with vectored thrust configuration. This LQG control for chosen model of VTAV has been verified by simulation of take-off and landing maneuvers using software package Simulink and demonstrated good performance for fast flight stabilization of model, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Linear-Quadratic-Gaussian (LQG) controller, situational awareness, vectored thrust aerial vehicle.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335794
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842References:
[1] M. R. Endsley, “Toward a theory of situation awareness in dynamic systems,” Human Factors, vol. 37, pp. 32-64, March 1995.
[2] J. Gorman, N. Cooke, and J. Winner, “Measuring team situation awareness in decentralized command and control environments,” Ergonomics, vol. 49, pp. 1312-1325, October 2006.
[3] Interim Brigade Combat Team Newsletter. (Online). Available: http://www.globalsecurity.org/military/library/ report/call/call_01-18_ toc.htm
[4] S. D. Prior, S. T. Shen, A. S. White, S. Odedra, M. Karamanoglu, M. A. Erbil, and T. Foran, “Development of a novel platform for greater situational awareness in the urban military terrain,” in Proc. 8th International Conf. Engineering Psychology and Cognitive Ergonomics, San Diego, USA, 2009, pp. 120-125.
[5] I. Astrov and A. Pedai, “Control of hovering manoeuvres in unmanned helicopter for enhanced situational awareness,” in Proc. International Conf. Industrial Mechatronics and Automation, Chengdu, China, 2009, pp. 143-146.
[6] W. Yuan, H. Jayakody, and J. Katupitiya, “Dynamic modelling and analysis of a vectored thrust aerial vehicle,” in Proc. Australasian Conf. Robotics and Automation, Wellington, New Zealand, 2012, pp. 1-8.