Search results for: Linear Optical Scanner
1801 An Evaluation Method for Two-Dimensional Position Errors and Assembly Errors of a Rotational Table on a 4 Axis Machine Tool
Authors: Jooho Hwang, Chang-Kyu Song, Chun-Hong Park
Abstract:
This paper describes a method to measure and compensate a 4 axes ultra-precision machine tool that generates micro patterns on the large surfaces. The grooving machine is usually used for making a micro mold for many electrical parts such as a light guide plate for LCD and fuel cells. The ultra precision machine tool has three linear axes and one rotational table. Shaping is usually used to generate micro patterns. In the case of 50 μm pitch and 25 μm height pyramid pattern machining with a 90° wedge angle bite, one of linear axis is used for long stroke motion for high cutting speed and other linear axis are used for feeding. The triangular patterns can be generated with many times of long stroke of one axis. Then 90° rotation of work piece is needed to make pyramid patterns with superposition of machined two triangular patterns. To make a two dimensional positioning error, straightness of two axes in out of plane, squareness between the each axis are important. Positioning errors, straightness and squarness were measured by laser interferometer system. Those were compensated and confirmed by ISO230-6. One of difficult problem to measure the error motions is squareness or parallelism of axis between the rotational table and linear axis. It was investigated by simultaneous moving of rotary table and XY axes. This compensation method is introduced in this paper.Keywords: Ultra-precision machine tool, muti-axis errors, squraness, positioning errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821800 Spectral Analysis of Speech: A New Technique
Authors: Neeta Awasthy, J.P.Saini, D.S.Chauhan
Abstract:
ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.Keywords: Cepstral Coefficient, Distance measures, Independent Component Analysis, Linear Predictive Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581799 Fluorescent-Core Microcavities Based On Silicon Quantum Dots for Oil Sensing Applications
Authors: V. Zamora, Z. Zhang, A. Meldrum
Abstract:
The compatibility of optical resonators with microfluidic systems may be relevant for chemical and biological applications. Here, a fluorescent-core microcavity (FCM) is investigated as a refractometric sensor for heavy oils. A high-index film of silicon quantum dots (QDs) was formed inside the capillary, supporting cylindrical fluorescence whispering gallery modes (WGMs). A set of standard refractive index oils was injected into a capillary, causing a shift of the WGM resonances toward longer wavelengths. A maximum sensitivity of 240 nm/RIU (refractive index unit) was found for a nominal oil index of 1.74. As well, a sensitivity of 22 nm/RIU was obtained for a lower index of 1.48, more typical of fuel hydrocarbons. Furthermore, the observed spectra and sensitivities were compared to theoretical predictions and reproduced via FDTD simulations, showing in general an excellent agreement. This work demonstrates the potential use of FCMs for oil sensing applications and the more generally for detecting liquid solutions with a high refractive index or high viscosity.
Keywords: Oils, optical resonators, sensing applications, whispering gallery modes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16221798 The Buffer Gas Influence Rate on Absolute Cu Atoms Density with regard to Deposition
Authors: S. Sobhanian, H. Naghshara, N. Sadeghi, S. Khorram
Abstract:
The absolute Cu atoms density in Cu(2S1/2ÔåÉ2P1/2) ground state has been measured by Resonance Optical Absorption (ROA) technique in a DC magnetron sputtering deposition with argon. We measured these densities under variety of operation conditions: pressure from 0.6 μbar to 14 μbar, input power from 10W to 200W and N2 mixture from 0% to 100%. For measuring the gas temperature, we used the simulation of N2 rotational spectra with a special computer code. The absolute number density of Cu atoms decreases with increasing the N2 percentage of buffer gas at any conditions of this work. But the deposition rate, is not decreased with the same manner. The deposition rate variation is very small and in the limit of quartz balance measuring equipment accuracy. So we conclude that decrease in the absolute number density of Cu atoms in magnetron plasma has not a big effect on deposition rate, because the diffusion of Cu atoms to the chamber volume and deviation of Cu atoms from direct path (towards the substrate) decreases with increasing of N2 percentage of buffer gas. This is because of the lower mass of N2 atoms compared to the argon ones.Keywords: Deposition rate, Resonance Optical Absorption, Sputtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13661797 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: Grayscale image format, image fusing, SURF detection, YCbCr image format.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11551796 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)
Authors: Zia R. Tahir, P. Mandal
Abstract:
This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0^o/+45^o/-45^o/0^o] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.
Keywords: CFRP Composite Cylindrical Shell, Asymmetric Meshing Technique, Primary Buckling, Secondary Buckling, Linear Eigenvalue Analysis, Non-linear Riks Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24861795 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations
Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin
Abstract:
In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.
Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901794 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition
Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla
Abstract:
This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.
Keywords: Characterization, diamond-like carbon, DLC, mechanical properties, pulsed laser deposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7041793 A Soft Error Rates Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers
Authors: Man Li, Wanting Zhou, Lei Li
Abstract:
Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of combinational logic circuit. The existing research on soft error rates (SER) of combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rates evaluation method based on LET. In this paper, we analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on LET. Based on this model, the error rate of test circuit ISCAS’85 is calculated. Experimental results show that this model can be used for SER evaluation.
Keywords: Communication satellite, pulse width, soft error rates, linear energy transfer, LET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3851792 On a New Numerical Analysis for the Symmetric Shortest Queue Problem
Authors: Tayeb Lardjane, Rabah Messaci
Abstract:
We consider a network of two M/M/1 parallel queues having the same poisonnian arrival stream with rate λ. Upon his arrival to the system a customer heads to the shortest queue and stays until being served. If the two queues have the same length, an arriving customer chooses one of the two queues with the same probability. Each duration of service in the two queues is an exponential random variable with rate μ and no jockeying is permitted between the two queues. A new numerical method, based on linear programming and convex optimization, is performed for the computation of the steady state solution of the system.
Keywords: Steady state solution, matrix formulation, convex set, shortest queue, linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14881791 A New Technique for Multi Resolution Characterization of Epileptic Spikes in EEG
Authors: H. N. Suresh, Dr. V. Udaya Shankara
Abstract:
A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). A multi-resolution approach and a non-linear energy operator are exploited. The signal on each EEG channel is decomposed into three sub bands using a non-decimated wavelet transform (WT). The WT is a powerful tool for multi-resolution analysis of non-stationary signal as well as for signal compression, recognition and restoration. Each sub band is analyzed by using a non-linear energy operator, in order to detect spikes. A decision rule detects the presence of spikes in the EEG, relying upon the energy of the three sub-bands. The effectiveness of the proposed technique was confirmed by analyzing both test signals and EEG layouts.Keywords: EEG, Spike, SNEO, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761790 Performance of Subcarrier- OCDMA System with Complementary Subtraction Detection Technique
Authors: R. K. Z. Sahbudin, M. K. Abdullah, M. Mokhtar, S. B. A. Anas, S. Hitam
Abstract:
A subcarrier - spectral amplitude coding optical code division multiple access system using the Khazani-Syed code with Complementary subtraction detection technique is proposed. The proposed system has been analyzed by taking into account the effects of phase-induced intensity noise, shot noise, thermal noise and intermodulation distortion noise. The performance of the system has been compared with the spectral amplitude coding optical code division multiple access system using the Hadamard code and the Modified Quadratic Congruence code. The analysis shows that the proposed system can eliminate the multiple access interference using the Complementary subtraction detection technique, and hence improve the overall system performance.Keywords: Complementary subtraction, Khazani-Syed code, multiple access interference, phase-induced intensity noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431789 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: Force variations, linear direct drive, modeling and system identification, variable excitation flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10331788 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations
Authors: Sara Barati, Karim Ivaz
Abstract:
In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.
Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24791787 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems
Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo
Abstract:
Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.
Keywords: Electrodeposition, kinetics diagrams, modeling, voltammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8121786 Influence of p-y curves on Buckling Capacity of Pile Foundation
Authors: Praveen Huded M., Suresh R. Dash
Abstract:
Pile foundations are one of the most preferred deep foundation systems for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Failure of pile foundation have occurred because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However, the buckling capacity depends on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient methods to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, there are different p-y curves available for modeling liquefiable soil. In the present work, the influence of two such p-y curves on the buckling capacity of pile foundation is studied considering the initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. A significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on the buckling capacity of pile foundation.
Keywords: pile foundation, liquefaction, buckling load, non-linear p-y curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6771785 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401784 Determining Optimum Time Multiplier Setting of Overcurrent Relays Using Mixed Integer Linear Programming
Authors: P. N. Korde, P. P. Bedekar
Abstract:
The time coordination of overcurrent relays (OCR) in a power distribution network is of great importance, as it reduces the power outages by avoiding the mal-operation of the backup relays. For this, the optimum value of the time multiplier setting (TMS) of OCRs should be chosen. The problem of determining the optimum value of TMS of OCRs in power distribution networks is formulated as a constrained optimization problem. The objective is to find the optimum value of TMS of OCRs to minimize the time of operation of relays under the constraint of maintaining the coordination of relays. A power distribution network can have a combination of numerical and electromechanical relays. The TMS of numerical relays can be set to any real value (which satisfies the constraints of the problem), whereas the TMS of electromechanical relays can be set in fixed step (0 to 1 in steps of 0.05). The main contribution of this paper is a formulation of the problem as a mixed-integer linear programming (MILP) problem and application of Gomory's cutting plane method to find the optimum value of TMS of OCRs. The TMS of electromechanical relays are taken as integers in the range 1 to 20 in the step of 1, and these values are mapped to 0.05 to 1 in the step of 0.05. The results obtained are compared with those obtained using a simplex method and its variants. It has been shown that the mixed-integer linear programming method outperforms the simplex method (and its variants) in the case of a system having a combination of numerical and electromechanical relays.
Keywords: Backup protection, constrained optimization, Gomory's cutting plane method, mixed-integer linear programming, overcurrent relay coordination, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4221783 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems
Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi
Abstract:
In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25151782 Cost Effective Real-Time Image Processing Based Optical Mark Reader
Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar
Abstract:
In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.Keywords: OMR, image processing, hough circle transform, interpolation, detection, Binary Thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15441781 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781780 Stability Criteria for Neural Networks with Two Additive Time-varying Delay Components
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper is concerned with the stability problem with two additive time-varying delay components. By choosing one augmented Lyapunov-Krasovskii functional, using some new zero equalities, and combining linear matrix inequalities (LMI) techniques, two new sufficient criteria ensuring the global stability asymptotic stability of DNNs is obtained. These stability criteria are present in terms of linear matrix inequalities and can be easily checked. Finally, some examples are showed to demonstrate the effectiveness and less conservatism of the proposed method.
Keywords: Neural networks, Globally asymptotic stability, LMI approach, Additive time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661779 Gauss-Seidel Iterative Methods for Rank Deficient Least Squares Problems
Authors: Davod Khojasteh Salkuyeh, Sayyed Hasan Azizi
Abstract:
We study the semiconvergence of Gauss-Seidel iterative methods for the least squares solution of minimal norm of rank deficient linear systems of equations. Necessary and sufficient conditions for the semiconvergence of the Gauss-Seidel iterative method are given. We also show that if the linear system of equations is consistent, then the proposed methods with a zero vector as an initial guess converge in one iteration. Some numerical results are given to illustrate the theoretical results.Keywords: rank deficient least squares problems, AOR iterativemethod, Gauss-Seidel iterative method, semiconvergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19281778 Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity
Authors: M. Siosemarde, M. Byzedi
Abstract:
Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.Keywords: dataset, precision, saturated hydraulic conductivity, soil and statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931777 Improved Stability Criteria for Neural Networks with Two Additive Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of stability criteria for neural networks with two additive time-varying delays.A new Lyapunov-Krasovskii function is constructed and some new delay dependent stability criterias are derived in the terms of linear matrix inequalities(LMI), zero equalities and reciprocally convex approach.The several stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Stability, Neural networks, Linear Matrix Inequalities (LMI) , Lyapunov function, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14491776 Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter
Authors: M. Rychlik, R. Roszak, M. Morzynski, M. Nowak, H. Hausa, K. Kotecki
Abstract:
Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.Keywords: computer modeling, numerical simulation, Reverse Engineering, structural model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17591775 A Study of the Effectiveness of the Routing Decision Support Algorithm
Authors: Wayne Goodridge, Alexander Nikov, Ashok Sahai
Abstract:
Multi criteria decision making (MCDM) methods like analytic hierarchy process, ELECTRE and multi-attribute utility theory are critically studied. They have irregularities in terms of the reliability of ranking of the best alternatives. The Routing Decision Support (RDS) algorithm is trying to improve some of their deficiencies. This paper gives a mathematical verification that the RDS algorithm conforms to the test criteria for an effective MCDM method when a linear preference function is considered.
Keywords: Decision support systems, linear preference function, multi-criteria decision-making algorithm, analytic hierarchy process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841774 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.
Keywords: Empirical mode decomposition (EMD), events detection, Gabor transform, optical time domain reflectometer (OTDR), wavelet threshold denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8031773 Design of a Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring
Authors: Arafat A. A. Shabaneh
Abstract:
Harsh environments require developed detection by an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBGs) are emerging sensing instruments that respond to variations in strain and temperature by varying wavelengths. In this study, a cascaded uniform FBG is designed as a strain sensor for 6 km length at 1550 nm wavelength with 30 °C temperature by analyzing dynamic strain and wavelength shifts. The FBG is placed in a small segment of an optical fiber that reflects light with a specific wavelength and passes on the remaining wavelengths. Consequently, periodic alteration occurs in the refractive index in the fiber core. The alteration in the modal index of the fiber is produced by strain effects on a Bragg wavelength. When the developed sensor is exposed to the strain (0.01) of the cascaded uniform FBG, the wavelength shifts by 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show the reliability and effectiveness of the strain monitoring sensor for remote sensing application.
Keywords: Remote sensing, cascaded fiber Bragg grating, strain sensor, wavelength shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4781772 Optical and Structural Properties of a ZnS Buffer Layer Fabricated with Deposition Temperature of RF Magnetron Sputtering System
Authors: Won Song, Bo-Ra Koo, Seok Eui Choi, Yong-Taeg Oh, Dong-Chan Shin
Abstract:
Optical properties of sputter-deposited ZnS thin films were investigated as potential replacements for CBD(chemical bath deposition) CdS buffer layers in the application of CIGS solar cells. ZnS thin films were fabricated on glass substrates at RT, 150oC, 200oC, and 250oC with 50 sccm Ar gas using an RF magnetron sputtering system. The crystal structure of the thin film is found to be zinc blende (cubic) structure. Lattice parameter of ZnS is slightly larger than CdS on the plane and thus better matched with that of CIGS. Within a 400-800 nm wavelength region, the average transmittance was larger than 75%. When the deposition temperature of the thin film was increased, the blue shift phenomenon was enhanced. Band gap energy of the ZnS thin film tended to increase as the deposition temperature increased. ZnS thin film is a promising material system for the CIGS buffer layer, in terms of ease of processing, low cost, environmental friendliness, higher transparency, and electrical propertiesKeywords: ZnS thin film, Buffer layer, CIGS, Solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398