Search results for: ISE Parameter Optimization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2829

Search results for: ISE Parameter Optimization.

2229 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids

Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash

Abstract:

The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.

Keywords: Ferroconvection, throughflow, temperature dependent viscosity, magnetic field dependent viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
2228 Improved BEENISH Protocol for Wireless Sensor Networks Based Upon Fuzzy Inference System

Authors: Rishabh Sharma, Renu Vig, Neeraj Sharma

Abstract:

The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.

Keywords: Wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
2227 Exergy Analysis of Combined Cycle of Air Separation and Natural Gas Liquefaction

Authors: Hanfei Tuo, Yanzhong Li

Abstract:

This paper presented a novel combined cycle of air separation and natural gas liquefaction. The idea is that natural gas can be liquefied, meanwhile gaseous or liquid nitrogen and oxygen are produced in one combined cryogenic system. Cycle simulation and exergy analysis were performed to evaluate the process and thereby reveal the influence of the crucial parameter, i.e., flow rate ratio through two stages expanders β on heat transfer temperature difference, its distribution and consequent exergy loss. Composite curves for the combined hot streams (feeding natural gas and recycled nitrogen) and the cold stream showed the degree of optimization available in this process if appropriate β was designed. The results indicated that increasing β reduces temperature difference and exergy loss in heat exchange process. However, the maximum limit value of β should be confined in terms of minimum temperature difference proposed in heat exchanger design standard and heat exchanger size. The optimal βopt under different operation conditions corresponding to the required minimum temperature differences was investigated.

Keywords: combined cycle simulation, exergy analysis, natural gas liquefaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
2226 Statistical Optimization of Process Conditions for Disinfection of Water Using Defatted Moringa oleifera Seed Extract

Authors: Suleyman A. Muyibi, Munirat, A. Idris, Saedi Jami, Parveen Jamal, Mohd Ismail Abdul Karim

Abstract:

In this study, statistical optimization design was used to study the optimum disinfection parameters using defatted crude Moringa oleifera seed extracts against Escherichia coli (E. coli) bacterial cells. The classical one-factor-at-a-time (OFAT) and response surface methodology (RSM) was used. The possible optimum range of dosage, contact time and mixing rate from the OFAT study were 25mg/l to 200mg/l, 30minutes to 240 minutes and 100rpm to 160rpm respectively. Analysis of variance (ANOVA) of the statistical optimization using faced centered central composite design showed that dosage, contact time and mixing rate were highly significant. The optimum disinfection range was 125mg/l, at contact time of 30 minutes with mixing rate of 120 rpm. 

Keywords: E.coli, disinfection, Moringa oleifera, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
2225 Stabilization of Nonnecessarily Inversely Stable First-Order Adaptive Systems under Saturated Input

Authors: M. De la Sen, O. Barambones

Abstract:

This paper presents an indirect adaptive stabilization scheme for first-order continuous-time systems under saturated input which is described by a sigmoidal function. The singularities are avoided through a modification scheme for the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be non-singular and then the estimated plant model is controllable. The modification mechanism involves the use of a hysteresis switching function. An alternative hybrid scheme, whose estimated parameters are updated at sampling instants is also given to solve a similar adaptive stabilization problem. Such a scheme also uses hysteresis switching for modification of the parameter estimates so as to ensure the controllability of the estimated plant model.

Keywords: Hybrid dynamic systems, discrete systems, saturated input, control, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2224 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)

Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat

Abstract:

An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.

Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
2223 Optimization of Soy Epoxide Hydroxylation to Properties of Prepolymer Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

The epoxidation of soybean oil at temperature of 600C was provided the best result in terms of attaching the –OH functionality. Temperatures below and above 600C it is likely the attaching reaction did not proceed sufficiently fast. The considerable yield below 40%, implies the oil is not completely converted, it is not possible by conventional methods, because the epoxide decomposes at the temperature required. The objective of this work was the development of catalyst toward the conversion of epoxide and polyol with reaction temperature at 50,60, and 700C. The effect of different type of catalyst were studied, the effect of alcohols with different molecular configuration was determined which leads to selective addition of alcohols to the epoxide oils.

Keywords: optimization, epoxide, soybean, catalyst

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
2222 Optimization of Breast Tumor Cells Isolation Efficiency and Purity by Membrane Filtration

Authors: Bhuvanendran Nair Gourikutty Sajay, Liu Yuxin, Chang Chia-Pin, Poenar Daniel Puiu, Abdur Rub Abdur Rahman

Abstract:

Size based filtration is one of the common methods employed to isolate circulating tumor cells (CTCs) from whole blood. It is well known that this method suffers from isolation efficiency to purity tradeoff. However, this tradeoff is poorly understood. In this paper, we present the design and manufacturing of a special rectangular slit filter. The filter was designed to retain maximal amounts of nucleated cells, while minimizing the pressure on cells, thereby preserving their morphology. The key parameter, namely, input pressure, was optimized to retain the maximal number of tumor cells, whilst maximizing the depletion of normal blood cells (red and white blood cells and platelets). Our results indicate that for a slit geometry of 5 × 40 μm on a 13 mm circular membrane with a fill factor of 21%, a pressure of 6.9 mBar yields the optimum for maximizing isolation of MCF-7 and depletion of normal blood cells.

Keywords: Circulating tumor cells, Parylene slit membrane, Retention, White Blood Cell depletion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
2221 Solving Bus Terminal Location Problem Using Genetic Algorithm

Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil

Abstract:

Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.

Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
2220 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit

Authors: Ahmed Elrewainy

Abstract:

Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.

Keywords: Basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
2219 Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris

Authors: Ahmed Arkoazi, Hussein Znad, Ranjeet Utikar

Abstract:

The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.

Keywords: Synergistic impact, optimization, CO2 biofixation, airlift reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
2218 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel

Authors: Richard E. Miller

Abstract:

12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.

Keywords: Dissimilar materials, friction stir, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
2217 A Combined Approach of a Sequential Life Testing and an Accelerated Life Testing Applied to a Low-Alloy High Strength Steel Component

Authors: D. I. De Souza, D. R. Fonseca, G. P. Azevedo

Abstract:

Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.

Keywords: Sequential Life Testing, Accelerated Life Testing, Underlying Three-Parameter Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
2216 Robust Camera Calibration using Discrete Optimization

Authors: Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian Küblbeck

Abstract:

Camera calibration is an indispensable step for augmented reality or image guided applications where quantitative information should be derived from the images. Usually, a camera calibration is obtained by taking images of a special calibration object and extracting the image coordinates of projected calibration marks enabling the calculation of the projection from the 3d world coordinates to the 2d image coordinates. Thus such a procedure exhibits typical steps, including feature point localization in the acquired images, camera model fitting, correction of distortion introduced by the optics and finally an optimization of the model-s parameters. In this paper we propose to extend this list by further step concerning the identification of the optimal subset of images yielding the smallest overall calibration error. For this, we present a Monte Carlo based algorithm along with a deterministic extension that automatically determines the images yielding an optimal calibration. Finally, we present results proving that the calibration can be significantly improved by automated image selection.

Keywords: Camera Calibration, Discrete Optimization, Monte Carlo Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2215 Linear Instability of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability analysis of wake-shear layers in twophase shallow flows is performed in the present paper. Twodimensional shallow water equations are used in the analysis. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. The stability calculations are performed for different values of the particle loading parameter and two other parameters which characterize the velocity ratio and the velocity deficit. The results show that the particle loading parameter has a stabilizing effect on the flow while the increase in the velocity ratio or in the velocity deficit destabilizes the flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
2214 Trust and Reputation Mechanism with Path Optimization in Multipath Routing

Authors: Ramya Dorai, M. Rajaram

Abstract:

A Mobile Adhoc Network (MANET) is a collection of mobile nodes that communicate with each other with wireless links and without pre-existing communication infrastructure. Routing is an important issue which impacts network performance. As MANETs lack central administration and prior organization, their security concerns are different from those of conventional networks. Wireless links make MANETs susceptible to attacks. This study proposes a new trust mechanism to mitigate wormhole attack in MANETs. Different optimization techniques find available optimal path from source to destination. This study extends trust and reputation to an improved link quality and channel utilization based Adhoc Ondemand Multipath Distance Vector (AOMDV). Differential Evolution (DE) is used for optimization.

Keywords: Mobile Adhoc Network (MANET), Adhoc Ondemand Multi-Path Distance Vector (AOMDV), Trust and Reputation, Differential Evolution (DE), Link Quality, Channel Utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
2213 Modeling and Identification of Hammerstein System by using Triangular Basis Functions

Authors: K. Elleuch, A. Chaari

Abstract:

This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.

Keywords: Identification, Hammerstein model, Piecewisenonlinear characteristic, Dead-zone nonlinearity, Triangular basisfunctions, Singular Values Decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
2212 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: Economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
2211 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: Genetic algorithm, optimization, reliability, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
2210 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 q"≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: Microchannel heat sinks, Conjugate heat transfer, Optimization, Genetic algorithm method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
2209 Prediction of Soil Hydraulic Conductivity from Particle-Size Distribution

Authors: A.F. Salarashayeri, M. Siosemarde

Abstract:

Hydraulic conductivity is one parameter important for predicting the movement of water and contaminants dissolved in the water through the soil. The hydraulic conductivity is measured on soil samples in the lab and sometimes tests carried out in the field. The hydraulic conductivity has been related to soil particle diameter by a number of investigators. In this study, 25 set of soil samples with sand texture. The results show approximately success in predicting hydraulic conductivity from particle diameters data. The following relationship obtained from multiple linear regressions on data (R2 = 0.52): Where d10, d50 and d60, are the soil particle diameter (mm) that 10%, 50% and 60% of all soil particles are finer (smaller) by weight and Ks, saturated hydraulic conductivity is expressed in m/day. The results of regression analysis showed that d10 play a more significant role with respect to Ks, saturated hydraulic conductivity (m/day), and has been named as the effective parameter in Ks calculation.

Keywords: hydraulic conductivity, particle diameter, particle-size distribution and soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8937
2208 Research on the Development and Space Optimization of Rental-Type Public Housing in Hangzhou

Authors: Xuran Zhang, Huiru Chen

Abstract:

In recent years, China has made great efforts to cultivate and develop the housing rental market, especially the rental-type public housing, which has been paid attention to by all sectors of the society. This paper takes Hangzhou rental-type public housing as the research object, and divides it into three development stages according to the different supply modes of rental-type public housing. Through data collection and field research, the paper summarizes the spatial characteristics of rental-type public housing from the five perspectives of spatial planning, spatial layout, spatial integration, spatial organization and spatial configuration. On this basis, the paper proposes the optimization of the spatial layout. The study concludes that the spatial layout of rental-type public housing should be coordinated with the development of urban planning. When planning and constructing, it is necessary to select more mixed construction modes, to be properly centralized, and to improve the surrounding transportation service facilities.  It is hoped that the recommendations in this paper will provide a reference for the further development of rental-type public housing in Hangzhou.

Keywords: Hangzhou, rental-type public housing, spatial distribution, spatial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
2207 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: J. Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
2206 A Hydro-Mechanical Model for Unsaturated Soils

Authors: A. Uchaipichat

Abstract:

The hydro-mechanical model for unsaturated soils has been presented based on the effective stress principle taking into account effects of drying-wetting process. The elasto-plastic constitutive equations for stress-strain relations of the soil skeleton have been established. A plasticity model is modified from modified Cam-Clay model. The hardening rule has been established by considering the isotropic consolidation paths. The effect of dryingwetting process is introduced through the ¤ç parameter. All model coefficients are identified in terms of measurable parameters. The simulations from the proposed model are compared with the experimental results. The model calibration was performed to extract the model parameter from the experimental results. Good agreement between the results predicted using proposed model and the experimental results was obtained.

Keywords: Drying-wetting process, Effective stress, Elastoplasticmodel, Unsaturated soils

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
2205 A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang

Abstract:

This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: Differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406
2204 Parallelization and Optimization of SIFT Feature Extraction on Cluster System

Authors: Mingling Zheng, Zhenlong Song, Ke Xu, Hengzhu Liu

Abstract:

Scale Invariant Feature Transform (SIFT) has been widely applied, but extracting SIFT feature is complicated and time-consuming. In this paper, to meet the demand of the real-time applications, SIFT is parallelized and optimized on cluster system, which is named pSIFT. Redundancy storage and communication are used for boundary data to improve the performance, and before representation of feature descriptor, data reallocation is adopted to keep load balance in pSIFT. Experimental results show that pSIFT achieves good speedup and scalability.

Keywords: cluster, image matching, parallelization and optimization, SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
2203 Solar Cell Parameters Estimation Using Simulated Annealing Algorithm

Authors: M. R. AlRashidi, K. M. El-Naggar, M. F. AlHajri

Abstract:

This paper presents Simulated Annealing based approach to estimate solar cell model parameters. Single diode solar cell model is used in this study to validate the proposed approach outcomes. The developed technique is used to estimate different model parameters such as generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor that govern the current-voltage relationship of a solar cell. A practical case study is used to test and verify the consistency of accurately estimating various parameters of single diode solar cell model. Comparative study among different parameter estimation techniques is presented to show the effectiveness of the developed approach.

Keywords: Simulated Annealing, Parameter Estimation, Solar Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
2202 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid -supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: Supercritical fluids, Solubility, Solid, PC-SAFT EoS, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635
2201 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.

Keywords: JPSO, operation, optimization, water distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2200 Software Reliability Prediction Model Analysis

Authors: L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: Exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657