Search results for: type 2 fuzzy logic systems.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7055

Search results for: type 2 fuzzy logic systems.

6485 Fuzzy Clustering Analysis in Real Estate Companies in China

Authors: Jianfeng Li, Feng Jin, Xiaoyu Yang

Abstract:

This paper applies fuzzy clustering algorithm in classifying real estate companies in China according to some general financial indexes, such as income per share, share accumulation fund, net profit margins, weighted net assets yield and shareholders' equity. By constructing and normalizing initial partition matrix, getting fuzzy similar matrix with Minkowski metric and gaining the transitive closure, the dynamic fuzzy clustering analysis for real estate companies is shown clearly that different clustered result change gradually with the threshold reducing, and then, it-s shown there is the similar relationship with the prices of those companies in stock market. In this way, it-s great valuable in contrasting the real estate companies- financial condition in order to grasp some good chances of investment, and so on.

Keywords: Fuzzy clustering algorithm, data mining, real estate company, financial analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
6484 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems

Authors: Andrey V. Timofeev

Abstract:

A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDRsystem are presented.

Keywords: Guaranteed detection, C-OTDR systems, change point, interval estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
6483 Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Authors: C. Ardil

Abstract:

This article presents a new approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the proposed approach, fuzzy decision information related to the aircraft selection problem is taken into account in ranking the alternatives and selecting the best one. The basic procedural step is to transform the fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A numerical example illustrates the proposed approach for the military combat aircraft selection problem.

Keywords: trapezoidal fuzzy numbers, multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
6482 Modelling Sudoku Puzzles as Block-world Problems

Authors: Cecilia Nugraheni, Luciana Abednego

Abstract:

Sudoku is a kind of logic puzzles. Each puzzle consists of a board, which is a 9×9 cells, divided into nine 3×3 subblocks and a set of numbers from 1 to 9. The aim of this puzzle is to fill in every cell of the board with a number from 1 to 9 such that in every row, every column, and every subblock contains each number exactly one. Sudoku puzzles belong to combinatorial problem (NP complete). Sudoku puzzles can be solved by using a variety of techniques/algorithms such as genetic algorithms, heuristics, integer programming, and so on. In this paper, we propose a new approach for solving Sudoku which is by modelling them as block-world problems. In block-world problems, there are a number of boxes on the table with a particular order or arrangement. The objective of this problem is to change this arrangement into the targeted arrangement with the help of two types of robots. In this paper, we present three models for Sudoku. We modellized Sudoku as parameterized multi-agent systems. A parameterized multi-agent system is a multi-agent system which consists of several uniform/similar agents and the number of the agents in the system is stated as the parameter of this system. We use Temporal Logic of Actions (TLA) for formalizing our models.

Keywords: Sudoku puzzle, block world problem, parameterized multi agent systems modelling, Temporal Logic of Actions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
6481 Motion Recognition Based On Fuzzy WP Feature Extraction Approach

Authors: Keun-Chang Kwak

Abstract:

This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.

Keywords: Motion recognition, fuzzy wavelet packet, Vicon physical data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
6480 Research on Transformer Condition-based Maintenance System using the Method of Fuzzy Comprehensive Evaluation

Authors: Po-Chun Lin, Jyh-Cherng Gu

Abstract:

This study adopted previous fault patterns, results of detection analysis, historical records and data, and experts- experiences to establish fuzzy principles and estimate the failure probability index of components of a power transformer. Considering that actual parameters and limiting conditions of parameters may differ, this study used the standard data of IEC, IEEE, and CIGRE as condition parameters. According to the characteristics of each condition parameter, relative degradation was introduced to reflect the degree of influence of the factors on the transformer condition. The method of fuzzy mathematics was adopted to determine the subordinate function of the transformer condition. The calculation used the Matlab Fuzzy Tool Box to select the condition parameters of coil winding, iron core, bushing, OLTC, insulating oil and other auxiliary components and factors (e.g., load records, performance history, and maintenance records) of the transformer to establish the fuzzy principles. Examples were presented to support the rationality and effectiveness of the evaluation method of power transformer performance conditions, as based on fuzzy comprehensive evaluation.

Keywords: Fuzzy, relative degradation degree, condition-basedmaintenance, power transformer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
6479 A New Method of Combined Classifier Design Based on Fuzzy Neural Network

Authors: Kexin Jia, Youxin Lu

Abstract:

To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a novel method of designing combined classifier based on fuzzy neural network (FNN) is presented in this paper. The method employs fuzzy neural network classifiers and interclass distance (ICD) to improve recognition reliability. Experimental results show that the proposed combined classifier has high recognition rate with large variation range of SNR (success rates are over 99.9% when SNR is not lower than 5dB).

Keywords: Modulation classification, combined classifier, fuzzy neural network, interclass distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
6478 Chattering Phenomenon Supression of Buck Boost DC-DC Converter with Fuzzy Sliding Modes Control

Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb

Abstract:

This paper proposes a Fuzzy Sliding Mode Control (FSMC) as a control strategy for Buck-Boost DC-DC converter. The proposed fuzzy controller specifies changes in the control signal based on the knowledge of the surface and the surface change to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

Keywords: Buck Boost converter, Sliding Mode Control, Fuzzy Sliding Mode Control, robustness, chattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
6477 Global Exponential Stability of Impulsive BAM Fuzzy Cellular Neural Networks with Time Delays in the Leakage Terms

Authors: Liping Zhang, Kelin Li

Abstract:

In this paper, a class of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms is formulated and investigated. By establishing a delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Keywords: Global exponential stability, bidirectional associative memory, fuzzy cellular neural networks, leakage delays, impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
6476 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability

Authors: N. Kumaresan , J. Kavikumar, Kuru Ratnavelu

Abstract:

In this paper, solution of fuzzy differential equation under general differentiability is obtained by simulink. The simulink solution is equivalent or very close to the exact solution of the problem. Accuracy of the simulink solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.

Keywords: Fuzzy differential equation, Generalized differentiability, H-difference and Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
6475 Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits

Authors: Konstantin Movsovic, Emanuele Stomeo, Tatiana Kalganova

Abstract:

The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.

Keywords: Evolvable hardware, evolutionary algorithm, digitallogic circuit, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
6474 RANFIS : Rough Adaptive Neuro-Fuzzy Inference System

Authors: Sandeep Chandana, Rene V. Mayorga

Abstract:

The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has been given away for a new framework based on 'Output Excitation Factor' and an inverse input transfer function. The paper also presents a brief comparison of performances, of the existing Rough Neural Networks and ANFIS architecture against the proposed methodology. It can be observed that the rough approximation based neuro-fuzzy architecture is superior to its counterparts.

Keywords: Boundary neuron, neuro-fuzzy, output excitation factor, RANFIS, rough approximation, rough neural computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
6473 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures

Authors: J. Menčík

Abstract:

Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.

Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
6472 Improved Fuzzy Neural Modeling for Underwater Vehicles

Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray

Abstract:

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
6471 The Stability of Almost n-multiplicative Maps in Fuzzy Normed Spaces

Authors: E. Ansari-Piri, N. Eghbali

Abstract:

Let A and B be two linear algebras. A linear map ϕ : A → B is called an n-homomorphism if ϕ(a1...an) = ϕ(a1)...ϕ(an) for all a1, ..., an ∈ A. In this note we have a verification on the behavior of almost n-multiplicative linear maps with n > 2 in the fuzzy normed spaces

Keywords: Almost multiplicative maps, n-homomorphism maps, almost n-multiplicative maps, fuzzy normed space, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
6470 A New Similarity Measure on Intuitionistic Fuzzy Sets

Authors: Binyamin Yusoff, Imran Taib, Lazim Abdullah, Abd Fatah Wahab

Abstract:

Intuitionistic fuzzy sets as proposed by Atanassov, have gained much attention from past and latter researchers for applications in various fields. Similarity measures between intuitionistic fuzzy sets were developed afterwards. However, it does not cater the conflicting behavior of each element evaluated. We therefore made some modification to the similarity measure of IFS by considering conflicting concept to the model. In this paper, we concentrate on Zhang and Fu-s similarity measures for IFSs and some examples are given to validate these similarity measures. A simple modification to Zhang and Fu-s similarity measures of IFSs was proposed to find the best result according to the use of degree of indeterminacy. Finally, we mark up with the application to real decision making problems.

Keywords: Intuitionistic fuzzy sets, similarity measures, multicriteriadecision making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
6469 Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

Authors: Ming-Hui Lee, Tsung-Chien Chen, Yuh-Shiou Tai

Abstract:

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Keywords: Fuzzy Input Estimator, Kalman Filter, RecursiveLeast Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
6468 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin C. Agwah, Paulinus C. Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342
6467 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: Ontology, logic modeling, electronic medical records, information extraction, vetted web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
6466 Fuzzy Analytic Hierarchy Process for Determination of Supply Chain Performance Evaluation Criteria

Authors: Ibrahim Cil, Onur Kurtcu, H. Ibrahim Demir, Furkan Yener, Yusuf. S. Turkan, Muharrem Unver, Ramazan Evren

Abstract:

Fuzzy AHP (Analytic Hierarchy Process) method is decision-making way at the end of integrating the current AHP method with fuzzy structure. In this study, the processes of production planning, inventory management and purchasing department of a system were analysed and were requested to decide the performance criteria of each area. At this point, the current work processes were analysed by various decision-makers and comparing each criteria by giving points according to 1-9 scale were completed. The criteria were listed in order to their weights by using Fuzzy AHP approach and top three performance criteria of each department were determined. After that, the performance criteria of supply chain consisting of three departments were asked to determine. The processes of each department were compared by decision-makers at the point of building the supply chain performance system and getting the performance criteria. According to the results, the criteria of performance system of supply chain by using Fuzzy AHP were determined for which will be used in the supply chain performance system in the future.

Keywords: AHP, fuzzy, performance evaluation, supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
6465 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
6464 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: Genetic algorithm, land consolidation, landholding, land reallocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
6463 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: Positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
6462 Extending the Aspect Oriented Programming Joinpoint Model for Memory and Type Safety

Authors: Amjad Nusayr

Abstract:

Software security is a general term used to any type of software architecture or model in which security aspects are incorporated in this architecture. These aspects are not part of the main logic of the underlying program. Software security can be achieved using a combination of approaches including but not limited to secure software designs, third part component validation, and secure coding practices. Memory safety is one feature in software security where we ensure that any object in memory is have a valid pointer or a reference with a valid type. Aspect Oriented Programming (AOP) is a paradigm that is concerned with capturing the cross-cutting concerns in code development. AOP is generally used for common cross-cutting concerns like logging and Database transaction managing. In this paper we introduce the concepts that enable AOP to be used for the purpose of memory and type safety. We also present ideas for extending AOP in software security practices.

Keywords: Aspect oriented programming, programming languages, software security, memory and type safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
6461 E-Appointment Scheduling (EAS)

Authors: Noraziah Ahmad, Roslina Mohd Sidek, Mohd Affendy Omardin

Abstract:

E-Appointment Scheduling (EAS) has been developed to handle appointment for UMP students, lecturers in Faculty of Computer Systems & Software Engineering (FCSSE) and Student Medical Center. The schedules are based on the timetable and university activities. Constraints Logic Programming (CLP) has been implemented to solve the scheduling problems by giving recommendation to the users in part of determining any available slots from the lecturers and doctors- timetable. By using this system, we can avoid wasting time and cost because this application will set an appointment by auto-generated. In addition, this system can be an alternative to the lecturers and doctors to make decisions whether to approve or reject the appointments.

Keywords: EAS, Constraint Logic Programming, PHP, Apache.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4607
6460 Traffic Signal Design and Simulation for Vulnerable Road Users Safety and Bus Preemption

Authors: Shih-Ching Lo, Hsieh-Chu Huang

Abstract:

Mostly, pedestrian-car accidents occurred at a signalized interaction is because pedestrians cannot across the intersection safely within the green light. From the viewpoint of pedestrian, there might have two reasons. The first one is pedestrians cannot speed up to across the intersection, such as the elders. The other reason is pedestrians do not sense that the signal phase is going to change and their right-of-way is going to lose. Developing signal logic to protect pedestrian, who is crossing an intersection is the first purpose of this study. Another purpose of this study is improving the reliability and reduce delay of public transportation service. Therefore, bus preemption is also considered in the designed signal logic. In this study, the traffic data of the intersection of Chong-Qing North Road and Min-Zu West Road, Taipei, Taiwan, is employed to calibrate and validate the signal logic by simulation. VISSIM 5.20, which is a microscopic traffic simulation software, is employed to simulate the signal logic. From the simulated results, the signal logic presented in this study can protect pedestrians crossing the intersection successfully. The design of bus preemption can reduce the average delay. However, the pedestrian safety and bus preemptive signal will influence the average delay of cars largely. Thus, whether applying the pedestrian safety and bus preemption signal logic to an isolated intersection or not should be evaluated carefully.

Keywords: vulnerable road user, bus preemption, signal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
6459 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions

Authors: A. Siam, R. Maamri, Z. Sahnoun

Abstract:

The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines, The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.

Keywords: Adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
6458 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model

Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri

Abstract:

The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.

Keywords: Fuzzy time series, neural network, forecasting error, average error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
6457 Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms

Authors: Xinhua Zhang, Kelin Li

Abstract:

In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Keywords: Bi-directional associative memory, fuzzy cellular neuralnetworks, reaction-diffusion, delays, impulses, global exponentialstability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
6456 Software Maintenance Severity Prediction with Soft Computing Approach

Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581