The Stability of Almost n-multiplicative Maps in Fuzzy Normed Spaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
The Stability of Almost n-multiplicative Maps in Fuzzy Normed Spaces

Authors: E. Ansari-Piri, N. Eghbali

Abstract:

Let A and B be two linear algebras. A linear map ϕ : A → B is called an n-homomorphism if ϕ(a1...an) = ϕ(a1)...ϕ(an) for all a1, ..., an ∈ A. In this note we have a verification on the behavior of almost n-multiplicative linear maps with n > 2 in the fuzzy normed spaces

Keywords: Almost multiplicative maps, n-homomorphism maps, almost n-multiplicative maps, fuzzy normed space, stability.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335310

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287

References:


[1] E. Ansari and N. Eghbali, Almost n-multiplicative maps, Submitted.
[2] M. Eshaghi Gordji, On approximate n-ring homomorphisms and n-ring detrivations arXiv:0812.5024v1
[math.FA] 30 Dec 2008.
[3] Z. Gajda, On stability of additive mappings, Intermat. J. Math. Sci., 14 (1991), 431-434.
[4] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431- 436.
[5] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
[6] S. Hejazian, M. Mirzavaziri and M.S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31, (1), (2005), 13-23.
[7] D.H. Hyers, G.Isac and Th.M. Rassias, Stability of functional equations in several variables, Birkh¨auser, Basel, (1998).
[8] D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (2-3) (1992), 125-153.
[9] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154.
[10] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers- Ulam-Rassias theorem, Fuzzy Sets and Systems, 159 (6) (2008), 720-729 .
[11] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[12] S. M. Ulam, Problems in modern mathematics, Chap. VI, Science eds., wiley, New York, 1960.
[13] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.