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Abstract—Recently, explanatory natural language inference has
attracted much attention for the interpretability of logic relationship
prediction, which is also known as explanation generation for
Natural Language Inference (NLI). Existing explanation generators
based on discriminative Encoder-Decoder architecture have achieved
noticeable results. However, we find that these discriminative
generators usually generate explanations with correct evidence but
incorrect logic semantic. It is due to that logic information is
implicitly encoded in the premise-hypothesis pairs and difficult
to model. Actually, logic information identically exists between
premise-hypothesis pair and explanation. And it is easy to extract
logic information that is explicitly contained in the target explanation.
Hence we assume that there exists a latent space of logic information
while generating explanations. Specifically, we propose a generative
model called Variational Explanation Generator (VariationalEG) with
a latent variable to model this space. Training with the guide
of explicit logic information in target explanations, latent variable
in VariationalEG could capture the implicit logic information in
premise-hypothesis pairs effectively. Additionally, to tackle the
problem of posterior collapse while training VariaztionalEG, we
propose a simple yet effective approach called Logic Supervision on
the latent variable to force it to encode logic information. Experiments
on explanation generation benchmark—explanation-Stanford Natural
Language Inference (e-SNLI) demonstrate that the proposed
VariationalEG achieves significant improvement compared to
previous studies and yields a state-of-the-art result. Furthermore, we
perform the analysis of generated explanations to demonstrate the
effect of the latent variable.

Keywords—Natural Language Inference, explanation generation,
variational auto-encoder, generative model.

I. INTRODUCTION

NATURAL Language Inference (NLI) is a long-standing

problem in NLP research, which aims to determine the

logic relationship of the given premise-hypothesis pair. As

one of the most important natural language understanding

task [1], the interpretability of NLI models is important in

many applications like the medical and legal scene. Recently,

a human-annotated explanation dataset called e-SNLI [2]

is proposed for NLI, which yields an extension task

of NLI, i.e., explanation generation. Trained on e-SNLI,

models could provide logic relationships and explanations

of premise-hypothesis pairs simultaneously, which rise the

interpretability of final decision in NLI.

According to the order of logic relationship prediction

and explanation generation, [2] proposed two paradigms
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called PREDICTANDEXPLAIN and PREDICTTHENEXPLAIN

for explanation generation of NLI. In this paper, we follow

the latter one for two folds: First, preliminary experiment

shows that a simple classifier using human-annotated

explanations could obtain an accuracy of 96.83% on the

test set of e-SNLI [2], which is much higher than using

premise-hypothesis pairs. Second, we can focus more on

explanation generation and generate better explanations for

interpretability. Like most textual generation tasks, the

dominative explanation generation methods [2] are mainly

based on discriminative encoder-decoder framework [3].

In this framework, premise and hypothesis are encoded

into a fixed-length vector separately and fed into the

decoder to generate explanations. Additionally, attention

mechanism [4], [5] is used to capture the attentive context

of premise-hypothesis pair in each decoding step. However,

existing discriminative explanation generators only using

premise-hypothesis pairs cannot model this implicitly logical

information effectively. As a result, these generators usually

generate explanations with correct evidence but incorrect logic

semantic. This is because logic information is implicitly

contained in the premise-hypothesis pairs and difficult to

model. On the other hand, logic information is explicitly

expressed in the target explanations and easy to extract.

Considering the identical logic information shared between

premise-hypothesis pair and explanation, we assume that

there exists a latent space of this logic information. To

model this latent space, we propose a deep generative model

called Variational Explanation Generator (VariationalEG)

using Conditional Variational Auto-Encoder (CVAE) [6].

Specifically, a continuous latent variable is introduced

to model the identical logic information shared between

premise-hypothesis pair and explanation. In addition to use

the source sentence pairs, decoder in VariationalEG generates

explanations with this logic latent variable. Nevertheless, the

proposed VariationalEG is non-trivial to train. Like most

existing variational text generation models [7], [8], [9], the

proposed VariationalEG encounters posterior collapse issue

while optimizing the Evidence Lower-bound (ELBO) [10].

Considering that logic information can be expressed in

two forms—logic relationships of label and logic semantic

of explanation, we introduce an additional loss called

Logic Supervision on the latent variable to predicte

logic relationships by latent variable. Experiments on

e-SNLI [2] demonstrate that this simple yet effective approach

tackles the posterior collapse in explanation generation.
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Finally, the proposed VariationalEG achieves significant

improvement compared to our discriminative base model, i.e.,

Transformer-based Explanation Generator (TransformerEG).

Also, VariationalEG yields a state-of-the-art result compared

to previous studies. We analyze the generated explanations of

these methods and demonstrate the effect of VariationalEG.

II. RELATED WORK

A. Explanation Generation for Natural Language Inference

As one of the most important natural language

understanding tasks [1], Natural Language

Inference (NLI) [11] should not be limited to predict

logic relationships between premise and hypothesis only.

Thanks to the release of a large human-annotated explanation

corpus for NLI [2], i.e. e-SNLI, a new domain called

explanation generation attracts much attention due to its

interpretability in logic relationships prediction. In e-SNLI,

models do not only need to predict logic relationships,

also generate the explanations. So it suffers “the chicken

or the egg” issue. That is to say, whether to generate

explanations first or predicate logic relationships first. [2]

proposed two paradigms called PREDICTANDEXPLAIN and

PREDICTTHENEXPLAIN:

• PREDICTANDEXPLAIN: PREDICTANDEXPLAIN

is a joint training architecture, in which logic

relationships prediction and explanation generation

are performed simultaneously. Specifically, logic

relationship is inserted as an logic word in the

front of explanation. Before generating explanations,

PREDICTANDEXPLAIN predicts the logic relationships

by generating the corresponding logic word first, i.e.,

{ENTAILMENT,NEUTRAL,CONTRADICTION}.

• PREDICTTHENEXPLAIN: PREDICTTHENEXPLAIN

believes that better explanation could enhance the

performance of logic relationship prediction. Specifically,

PREDICTTHENEXPLAIN trains two sub-models for

explanation generation and logic relationship prediction

separately. And the logic relationship is predicted using

the generated explanation.

Our VariationalEG focuses on generating better explanations

which can be considered as the explanation generation

part of PREDICTTHENEXPLAIN. To compare the

performance of logic relationships prediction with other

PREDICTTHENEXPLAIN models justly, we use the same

classifier as [2]. Explanation-based logic relationship

prediction could be improved as future work.

B. Variational Auto-Encoder

Variational Auto-Encoder (VAE) [10], [12] has achieved

remarkable performance on various text generation tasks such

as machine translation [13], dialog generation [14], [15]

and other text generation tasks [7], [16]. Instead of being

encoded into a fixed point as auto-encoder, source input

in VAE is encoded into a distribution. Sampling from this

distribution, VAE forms a latent variable and uses it to

reconstruct the original input. Based on VAE, [6] proposed an

advanced generative model called Conditional VAE (CVAE).
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(b). Graphical Model of 
Generative Explanation Generator
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Fig. 1 Graphical models of discriminative explanation generator and
generative explanation generator

CVAE could generate different text conditioned on the given

context [17], [9]. Obviously, we can employ CVAE to

generate explanations conditioned on the premise-hypothesis

pairs. However, both VAE and CVAE on text generation are

non-trivial to train—KL term in ELBO can easily vanish to

0 and the sampled latent variable becomes non-informative,

which is known as posterior collapse. To tackle this issue,

various approaches [7], [8], [15] have been proposed. Similar

to BOW loss [9], Logic Supervision adds an additional loss

on latent variable. However, this approach is designed based

on the property of explanation generation, i.e., to force latent

variable to encode the global indentical logic information

between premise-hypothesis pairs and target explanations.

III. VARIATIONAL EXPLANATION GENERATOR

Notation We denote premise as xP = 〈xP
1 , x

P
2 , ..., x

P
m〉 and

hypothesis as xH = 〈xH
1 , xH

2 , ..., xH
n 〉, where xP

i or xH
j is a

token in premise or hypothesis. The corresponding explanation

is denoted as yE = 〈yE1 , yE2 , ..., yEe 〉 and the logic relationship

is denoted as l. We use z to present the latent variable.

Fig. 1 shows the graphical models of discriminative

explanation generator and generative explanation generator.

As shown in Fig. 1 (a), discriminative explanation generation

can be formulated as p(yE |xP ,xH) and logic relationship is

predicted using generated explanation p(l|yE). In generative

explanation generator (see Fig. 1 (b)), explanation is

generated by introducing a latent variable z: p(yE |xP ,xH , z).
Specifically, latent variable is sampled from a distribution

conditioned on premise and hypothesis: p(z|xP ,xH). The

entire generative explanation generation can be written as:

p(yE |xP ,xH) =

∫
p(yE , z|xP ,xH)dz,

=

∫
p(yE |xP ,xH , z)p(z|xP ,xH)dz.

(1)

According to the evidence lower bound (ELBO) shown in

[6], the objective function of generative explanation generator

can be derived from (1):

log p(yE |xP ,xH) ≥ −KL(q(z|xP ,xH ,yE)‖p(z|xP ,xH))

+ Eq[log p(y
E |xP ,xH , z)]

= LELBO,
(2)

which is called as ELBO. By optimizing ELBO, generative

explanation generator can be trained efficiently using

Stochastic Gradient Variational Bayes (SGVB) estimator [10].
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Fig. 2 Overall architecture of the proposed Variational Explanation Generator

The proposed Variational Explanation

Generator (VariationalEG) is a generative model. Fig. 2

depicts the overall architecture of VariationalEG, which is

mainly composed by three modules: First, a Variational

Encoder aims to obtain contextual representations of

premise-hypothesis pair and target explanation. Then a

Variational Inferrer is responsible for modeling the prior
distribution p(z|xP ,xH) and approximating the posterior
distribution p(z|xP ,xH ,yE) in ELBO. Finally, an Attentive

Variational Decoder generates explanations by maximizing

the probability p(yE |xP ,xH , z). In the following of this

section, we will introduce these modules in detail.

A. Transformer-Based Variational Encoder

Since the input of explanation generation is a

premise-hypothesis pair, previous studies [2] use a siamese

RNN-based encoder to obtain the contextual representations

of them separately. This structure requires decoder performing

twice attentive operations to the source field, which causes

attention confliction. That is to say, decoder cannot distinguish

to attend premise or hypothesis more at one step.

Inspired by the concatenated input used in BERT [18],

we first introduce to use Transformer [19] as explanation

generator’s encoder. In Transformer-based variational encoder,

premise and hypothesis are concatenated as one sequence input

with a separation symbol “〈SEP〉”: x = [xP , 〈SEP〉,xH ].
Additionally, we use segment embeddings xseg to help model

distinguish premise and hypothesis, where premise is denoted

as 0 and hypothesis is denoted as 1. The final input of

variational encoder from source sentence pair is x̂ = x+xseg.

Then variational encoder uses Transformer to obtain the

contextual representations of the input sentence pairs:

s1 = TransformerEncoder([xP , 〈SEP〉,xH ] + xseg),

= 〈s11, s12, ..., s1m+n+1〉.
(3)

Moreover, Self-Attention in Transformer models the

interaction between premise and hypothesis, which is

lacking in the siamese RNN-based encoder.

In addition to encode source premise-hypothesis pair,

variational encoder also needs to obtain the contextual

representation of target explanation yE , which will be used

in variational inferrer: s2 = 〈s21, s22, ..., s2l 〉. All the segment

embeddings are set as 0 while encoding the target explanation.

B. Variational Inferrer

Variational inferrer is the core module of VariationalEG,

which aims to estimate the premise-hypothesis-related

conditional prior distribution p(z|xP ,xH) and approximate

the true explanation-related posterior distribution

p(z|xP ,xH ,yE). Additionally, variational inferrer samples

from conditional prior distribution to obtain latent variable

z, which will be used in decoder to generate explanation.

To model these two distributions of the latent variable, we

introduce two separate networks called Prior Network and

Posterior Approximation Network.

1) Prior Network: Prior Network is in charge of estimating

the conditional prior distribution p(z|xP ,xH) of latent

variable z. Specifically, we assume that latent variable z
follows multivariate Gaussian distribution N (μ1, σ

2
1) with a

diagonal covariance matrix. Based on this assumption, Prior

Network estimates mean μ1 and variance σ2
1 conditioned on

premise-hypothesis pair. First, we use average-pooling of the

contextual representations s1 to obtain the fixed-length vector

of premise-hypothesis pair:

s1avg =
1

m+ n+ 1

m+n+1∑
i=1

s1i . (4)

Then two distinct single layer feed-forward networks (FFN)

are used to estimate the mean and variance of prior

distribution:

μ1 = fμ1(s
1
avg), log σ2

1 = fσ2
1
(s1avg), (5)

where μ1 and σ2
1 ∈ R

dz , and dz is the dimension of latent

variable. Sampling from the premise-hypothesis-related prior

distribution, Prior Network provides the latent variable z:

z = μ1 + σ1 � ε, where ε ∼ N (0, I). (6)

2) Posterior Approximation Network: Since the true

posterior distribution p(z|xP ,xH ,yE) is intractable to model,

we use a Posterior Approximation Network to approximate it

depending on target explanation additionally. In this procedure,

explicit logic information in explanation is encoded into

the posterior distribution of latent variable. By minimizing

the KL term in (2), the prior distribution could also

encode the explicit logic information. Specifically, Posterior

Approximation Network estimates the mean and variance of

posterior distribution N (μ2, σ
2
2). Similar to the embeddings

of premise-hypothesis pair obtained in (4), we first obtain

a fixed-length representation of target explanation using

average-pooling:

s2avg =
1

l

l∑
i=1

s2i . (7)

Then mean μ2 and variance σ2
2 of posterior distribution

are estimated based on premise-hypothesis pair and target

explanation:

μ2 = fμ2(s
1
avg, s

2
avg), log σ2

2 = fσ2
2
(s1avg, s

2
avg), (8)

where μ2 and σ2
2 ∈ R

dz , and f(·) are distinct single layer

FFNs.
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C. Attentive Variational Decoder

Like most attentive decoders [4], [5] used in text

generation, VariationalEG employs Transformer with

multi-head attention [19] as decoder to generate explanations.

At each step, in addition to depend on the last generated

token yEi−1 and the context vector ci by attending to

premise-hypothesis pair, variational decoder also takes

advantage of latent variable z provided by variational inferrer

to generate explanations:

p(yE |xP ,xH , z) =
e∏

i=1

p(yEi |yE<i,x
P ,xH , z),

=
e∏

i=1

g(yEi−1, ci, z).

(9)

D. Model Optimizing

The proposed VariationalEG can be trained by optimized

the LELBO in (2) using Stochastic Gradient Variational

Bayes (SGVB) [10]. However, like most existing VAE-based

text generators, VariationalEG faces the challenge to encode

meaningful information in the latent variable, which also

known as posterior collapse. To tackle this issue, we introduce

two approaches to train VariationalEG: KL Annealing and

Logic Supervision.

• KL Annealing: KL Annealing is a popular approach

proposed in [20] and has been demonstrated its effort in

many VAE-based text generation models [9], [16]. The

basic idea of KL Annealing is that the weight of KL term

in (2) is increased gradually from 0 to 1 during training.

• Logic Supervision: The logic relationship and logic

semantic can be treated as two different expressions

of logic information. Inspired by this, we propose a

simple approach called Logic Supervision on the latent

variable. The idea of Logic Supervision is to predict

logic relationship using latent variable: log p(l|z) = f(z),
where f is a multi-layer perceptron.

Finally, the modified objective function with Logic

Supervision can be formulated as:

L = LELBO + α · Eq log p(l|z), (10)

where α is the weighting hyper-parameter of Logic

Supervision on latent variable.

IV. EXPERIMENTS

A. Experiments Setup

1) Dataset: We use the benchmark of explanation

generation of NLI, i.e., e-SNLI [2], to evaluate the proposed

VariationalEG and other explanation generators. e-SNLI

contains 570k data points derived from SNLI [20].

Each data point in e-SNLI consists of premise,

hypothesis, logic relationship and three explanations

with identical logic semantic. We use the standard split of

training/development/test datasets with 549,367/9,842/9,824

data points.

TABLE I
PERFORMANCE OF THE PROPOSED VARIATIONALEG AND PREVIOUS

STUDIES ON E-SNLI

Models Label Accuracy↑Perplexity↓BLEU↑ExplCorrect@100↑

e-INFERSENT† 83.96 10.58 22.40 34.68

SEQ2SEQ† 81.59 8.95 24.14 49.8

ATTENTION† 81.71 6.1 27.58 64.27

TransformerEG‡ 81.83 4.30 31.96 67.6

VariationalEG‡ 85.79 4.23 32.57 75.2

The higher↑ (or the lower ↓) value means the better performance. † denotes
the results are drawn from [2]. ‡ denotes the results are averaged from five
experiments with different random seeds.

2) Evaluation Metrics: Following [2], we use four

metrics to evaluate the performance of the proposed

explanation generator: Label Accuracy, Perplexity, BLEU, and

ExplCorrect@100. Perplexity and BLEU [21] are general

evaluation metrics commonly used in text generation tasks.

Here we take a brief introduction of Label Accuracy and

ExplCorrect@100:

• Label Accuracy: In PREDICTTHENEXPLAIN, Label

Accuracy is obtained using the generated explanations. In

PREDICTANDEXPLAIN Label Accuracy is obtained the

given premise-hypothesis pairs.

• ExplCorrect@100: Since it is hard to evaluate the

correctness of generated explanations only using

automatic metrics, we use a human evaluation metric

called ExplCorrect@100 to perform on the first 100 data

points as supplementary, which focus on the correctness

of logic semantic with proper evidence in generations.

B. Experiments Results

Table I shows the overall performance of the proposed

VariationalEG and related work on e-SNLI. First, we list the

comparable state-of-the-arts models:

• e-INFERSENT [2]: e-INFERSENT is an RNN-based

PREDICTANDEXPLAIN model, which predicts logic

relationships and generates explanations simultaneously.

Specifically, logic relationship is inserted as a logic word,

i.e., {ENTAILMENT,NEUTRAL,CONTRADICTION}, in the

front of explanation. Before generating explanations,

e-INFERSENT predicts the logic relationships by

generating the corresponding logic word first.

• SEQ2SEQ [2]: SEQ2SEQ is an RNN-based

PREDICTTHENEXPLAIN model, which uses

Sequence-to-Sequence [3] model to generate explanations

and a BiLSTM with MLP-classifier to predict logic

relationships using the generated explanations.

• ATTENTION [2]: ATTENTION adds two separate attention

modules in SEQ2SEQ to performs premise-related

attention and hypothesis-related attention at each

decoding step. These two attentive contexts are

concatenated as input at each step of generating

explanations.

Since the proposed VariationalEG is a Transformer-based

PREDICTTHENEXPLAIN model, we set vanilla Transformer

explanation generator (TransformerEG) as baseline.
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TABLE II
THE GENERATED EXPLANATIONS OF E-SNLI TEST SET

Premise A snowboarder on a wide plain of snow.
Hypothesis A snow field with a snowboarder on it.

Models Explanation Label

Groud Truth wide plain of snow is a rephrasing of snow field. Entailment
ATTENTION snow is not the only thing that snow can be plain. Neutral

TransformerEG a plain of snow is a snow field. Entailment
VariationalEG a plain of snow is a snow field. Entailment

Premise A man in a black shirt overlooking bike maintenance.
Hypothesis A man watches bike repairs.

Models Explanation Label

Groud Truth bike repairs and bike maintenance are nearly synonymous. Entailment
ATTENTION a man who is overlooking bike maintenance is not necessarily watching it. Neutral

TransformerEG a man overlooking bike maintenance is not necessarily watching bike repairs. Neutral
VariationalEG overlooking bike maintenance is the same as watches bike repairs. Entailment

Premise A person dressed in a dress with flowers and a stuffed bee attached to it, is pushing a baby stroller down the street.
Hypothesis An old lady pushing a stroller down a busy street.

Models Explanation Label

Groud Truth a person in a dress of a particular type need neither be old nor female; a street need not be considered busy if only one Neutral
person is pushing a stroller down it.

ATTENTION the person pushing the baby stroller is not necessarily old. Neutral
TransformerEG not all people are old. Neutral
VariationalEG not all people are old ladies; not all streets are busy. Neutral

As shown in Table I, compared to the RNN-based

PREDICTTHENEXPLAIN models, TransformerEG achieves

substantial improvement on Perplexity, BLEU and

ExplCorrect@100. To obtain comparable Label Accuracy

results, we reload the classifier used in SEQ2SEQ

and ATTENTION to predict logic relationships. Like

most RNN-based PREDICTTHENEXPLAIN models,

Label Accuracy of TransformerEG still lags behind the

PREDICTANDEXPLAIN model, i.e., e-INFERSENT. We find

that PREDICTANDEXPLAINs always get better performance

on Label Accuracy than PREDICTTHENEXPLAINs, but worse

performance on other evaluation metrics. It may be related

to the different input—PREDICTTHENEXPLAINs predict

logic relationships based on premise-hypothesis pairs and

PREDICTANDEXPLAINs predict logic relationships based

on the generated explanations, which shows that generated

explanations still do not contain enough logic information.

As shown in Table I, the proposed VariationalEG

achieves the best performance among the related explanation

generators and yields a new state-of-the-art result. Specifically,

VariationalEG obtains about 2% improvement on Label

Accuracy compared to e-INFERSENT. On Perplexity and

BLEU, VariationalEG obtains substantial improvement above

TransformerEG. On ExplCorrect@100 of the generated

explanation, VariationalEG obtains significant improvement

from 64.27 to 75.2. These significant improvements on e-SNLI

demonstrate that the proposed VariationalEG does make sense.

C. Experiments Analysis

To verify the motivation of the proposed VariationalEG,

we conduct in-depth analysis of the generated explanations,

ablation study of Logic Supervision and latent variable.

1) Analysis on Generated Explanations: Tabel II shows

three samples from e-SNLI test set and the corresponding

generated explanations from the state-of-the-art models.

• The first block in Table II is an entailment sample. Due to

the lack of interaction between premise and hypothesis,

ATTENTION cannot capture entailment-related parts in

premise and hypothesis, i.e., plain of snow and

snow field . As a result, ATTENTION generates

neutral explanation with incorrect evidence. Since we

concatenate premise and hypothesis as a single input

and use the Self-Attention mechanism in Transformer

to model the interaction between sentence pairs,

both two Transformer-based explanation generators

generate correct explanations with entailment-related

parts. These generated results show the advantage of

Transformer-based explanation generators.

• The second block in Table II is another entailment

sample. All three explanation generators capture

entailment-related parts in premise-hypothesis pair,

i.e., overlooking bike maintenance and watches bike
repairs . However, both ATTENTION and TransformerEG

generate explanations with incorrect logic. In contrast,

VariationalEG generates a logic-correct explanation

due to the effect of the latent variable. Obviously,

the proposed VariationalEG can capture better logic

information than TransformerEG.

• The third block in Table II is a neutral sample.

All three explanation generators generate logic-correct

explanations. However, the generated explanations

by ATTENTION and TransformerEG only contain

part information of complete explanation. These two

explanations just point out old lady in hypothesis having
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TABLE III
ABLATION STUDY OF LOGIC SUPERVISION ON E-SNLI

Models
Label Accuracy↑ Perplexity↓ BLEU↑

Dev. Test. Dev. Test. Dev. Test.

TransformerEG 81.91 81.83 4.30 4.30 32.84 31.96
TransformerEG (+αLLogic) 82.61 82.47 4.28 4.29 32.87 32.13

VariationalEG (LELBO) 82.83 83.00 4.29 4.30 32.90 32.15
VariationalEG (LELBO + αLLogic) 85.44 85.79 4.23 4.23 33.26 32.57

TABLE IV
THE GENERATED EXPLANATIONS WITHOUT LOGIC SUPERVISION

Premise A snowboarder on a wide plain of snow.
Hypothesis A snowboarder gliding over a field of snow.

Models Explanation Label

Groud Truth just because a snow boarder is on snow does not mean that he is in motion gliding over the snow. Neutral
VariationalEG (LELBO) gliding over a field of snow is a rephrasing of on a wide plain of snow. Entailment

VariationalEG (LELBO + αLLogic) a snowboarder on a wide plain of snow does not imply gliding over a field of snow. Neutral

Fig. 3 Effect of weight α on Label Accuracy

no reference in the premise. Since the latent variable

could capture global logic information, VariationalEG

generates an explanation with complete information.

Besides the old lady , the explanation points out that the

busy street in hypothesis is unfounded from the premise.

Analyzing on these generated explanations, we have verified

the proposed VariationalEG could generate better explanations

with correct logic and complete information.

2) Ablation Study of Logic Supervision: Table III shows the

ablation study of Logic Supervision on e-SNLI development

set and test set. After removing Logic Supervision, Label

Accuracy of VariationalEG decreases to 82.83% and 83.00%

on development set and test set. Moreover, Perplexity

and BLEU of VariationalEG (LELBO) degrade to the

performance of TransformerEG closely, which is related

to the posterior collapse issue. It obviously demonstrates

the effect of the proposed Logic Supervision. Additionally,

we introduce Logic Supervision on the hidden states

of TransformerEG (TransformerEG+αLLogic) and obtain

substantial improvement. But its performance still lags behind

VariationalEG, which verifies the effect of the advanced

variational generator. To further analyze the effect of Logic

Supervision, we show the generated explanations in Tabel IV.

Although VariationalEG without Logic Supervision captures

the neutral-related parts in the premise-hypothesis pair, i.e.,

TABLE V
TIME CONSUMPTION OF TRAINING/INFERENCE ON E-SNLI PER EPOCH

ATTENTION TransformerEG VariationalEG

Training Time 2h30mins 20mins 25mins
Inference Time 10mins 30s 33s

gliding over the snow , it generates an explanation with

incorrect logic—a rephrasing of . Training with Logic

Supervision, VariationalEG generates neutral explanation with

correct evidence. It demonstrates that Logic Supervision does

help the latent variable encode global logic information.

3) Predict Logic Relationship using Latent Variable:
Furthermore, we investigate the effect of latent variable

z on Label Accuracy. We denote Label Accuracy using

generated explanations as Accexpl and Label Accuracy using

latent variable as Accz. As shown in Fig. 3, Accz is

always higher than Accexpl under different α. Analyzing these

2% relation-explanation inconsistent samples, we find that

although latent variable encodes correct logic information,

decoder still generates explanations with incorrect logic. It

will be a research point of enhancing the influence of the

latent variable to decoder in future work.

D. Efficiency of VariationalEG

Since the VariationalEG involves sampling latent variable z,

we investigate the time consumption of different explanation

generators. Table V shows the efficiency of RNN-based

explanation generator and Transformer-based explanation

generators. RNN-based generator ATTENTION consumes

about 2h30mins to train and 10mins to inference per epoch.

Thanks to the parallel computation in Transformer, time

consumption of training TransformerEG decreases to about

20mins per epoch on the same hardware, gaining 7.5x

speedup compared to RNN-based generator. Inference time of

TransformerEG decreases to about 30s per epoch and gains

20x speedup. In VariationalEG, we perform one sampling

per data point on the latent variable. Time consumption of

training VariationalEG increases to about 25mins per epoch,
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requiring more 25% time. While evaluating VariationalEG

consumes about more 10% time per epoch compared to

TransformerEG. However, the speed of VariationalEG is still

much faster than the RNN-based generator. To summarize,

the proposed VariationalEG does not only achieve better

performance compared to the existing explanation generators,

also consumes less time to train and inference.

E. Implementation Details

We implement the proposed VariationalEG using

PyTorch [22] and train it on Tesla v100. We use Adam

optimizer [23] with an initial learning rate of 0.0001 and

minimum learning rate of 10−5. If the loss on development

set does not decrease compared to the previous epoch,

learning rate will be decayed in half. Batch size is set as 64.

We apply Dropout [24] in Transformer with dropout rate =

0.4 to avoid overfitting. We replace words whose frequency

less than 15 with unknown symbol 〈UNK〉. Embeddings of

TransformerEG and VariationalEG are randomly initialized

with Xavier [25]. Transformers in encoder and decoder are

set as 512 dimensions, 8 heads 6 layers, and 1024 inner

dimensions. We set the dimension of latent variable z as 300.

To avoid posterior collapse in VariationalEG, we use logistic

function as KL-Annealing [7] function within the first 15000

batches. Additionally, the weight of logic supervision α is set

as 1.0.

V. CONCLUSION

In this paper, we propose a novel generative explanation

generator for NLI called Variational Explanation

Generator (VariationalEG). VariationalEG introduces a

latent variable to model the global logic information between

premise-hypothesis pair and explanation. Additionally, a

simple yet effective method called Logic Supervision is

introduced to avoid the posterior collapse in VariationalEG.

Experiments on the benchmark of explanation generation

of NLI show that the proposed VariationalEG achieves

significant improvement compared to the base model and

yields a new state-of-the-art result on e-SNLI. In future

work, we hope to make latent variable more interpretable and

enhance the influence of latent variable on decoder.
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