
 

 

  
Abstract—The intelligent fuzzy input estimator is used to estimate 

the input force of the rigid bar structural system in this study. The 
fuzzy Kalman filter without the input term and the fuzzy weighting 
recursive least square estimator are two main portions of this method. 
The practicability and accuracy of the proposed method were verified 
with numerical simulations from which the input forces of a rigid bar 
structural system were estimated from the output responses. In order to 
examine the accuracy of the proposed method, a rigid bar structural 
system is subjected to periodic sinusoidal dynamic loading. The 
excellent performance of this estimator is demonstrated by comparing 
it with the use of difference weighting function and improper the 
initial process noise covariance. The estimated results have a good 
agreement with the true values in all cases tested. 
 

Keywords—Fuzzy Input Estimator, Kalman Filter, Recursive 
Least Square Estimator. 

I. INTRODUCTION 
N   the course of the fatigue analysis, the anti-vibration 
design, and the reliability assessment of the structure system, 

the most important and necessary procedure is to obtain the 
values of the true loads to the system. However, for some 
physical systems, direct measurements of excitation loads are 
difficult to be realized because of very large magnitudes of 
loads. Besides, there are always difficulties in installing the 
load transducers used to measure the active loads to the 
structure system. One of the methods is to estimate the input 
forces by applying the measured dynamic responses by an 
inverse technique.  

The inverse technique general has been applied to both 
structural dynamic and heat transfer problems. Hollandsworth 
and Busby [1] used the modal methods to analyze the structure 
and dynamic programming. Bushy and Trujillo [2] used the 
inverse technique to analyze an inverse heat conduction 
problem. Inverse problems usually tend to be ill-posed, in the 
sense that infinitesimally small variations in the input data can 
cause large variations in the results, and tend to be 
ill-conditioned, namely, a small noise in measurements results 
in erroneous estimations of the forces. In order to overcome 
these difficulties, Wang [3] used the weighted total acceleration 
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method to detect the vibration force acting on the concentrated 
-massed nonlinear beam. Inoue et al. [4] proposed the least 
square method, which is based on the wiener filtering theory, 
the mean square error, and the singular value decomposition 
(SVD), to improve the estimation precision and to obtain the 
optimal estimates. Haung [5] adopted the conjugate gradient 
method (CGM) to estimate the unknown time-dependent 
external forces in a multiple-degree-of-freedom damped 
system. Doyle showed that an objective function based on the 
correlation of forces could be used to evaluate different guessed 
for the case of a simple beam [6]. Doyle’s work has been 
further developed and extended to include frame structures [7]. 
The estimation algorithms of the above references are all in the 
batch forms. This kind of method is not an on-line procedure of 
the unknown input estimation. This method is time-consuming 
and is not efficient to process the measurement data.  

In order to promote the estimation efficiency, some recent 
studies [8-9] use the input estimation method to inversely solve 
the 1-D and 2-D heat conduction problems. Lee et al. [10] 
utilized the adaptive weighted input estimation method to 
inversely solve the burst load of the truss structure system. 
Chen et al. [11-12] investigated the adaptive input estimation 
method applied to the inverse estimation of load input in the 
multi-layer shearing stress structure and the identification of 
moving load in the bridge structure system. As opposed to the 
batch process, the input estimation method is using the 
recursive form to process the data when dealing with more 
complex systems. There is no need to store all the data to 
implement the process, and the quantity of memory used can be 
reduced. The disadvantage was that not only has higher 
effectiveness but also the magnitude of unknown could be 
estimated in time.  

In this study, an intelligent input estimator to estimate the 
periodic sinusoidal dynamic loading of a rigid bar structural 
system is presented. The efficient estimator are accelerated and 
weighted by the fuzzy accelerating and weighting factor 
proposed based on the fuzzy logic inference system. By 
comparing the results with the adaptive and constant weighted 
factor input estimation methods, the efficiency, adaptively and 
robustness of the proposed method can be demonstrated. 

II. PROBLEM FORMULATION  
The geometry and coordinates of a rigid bar structural 

system are shown in figure 1(a). The displacement and joined 
forces of the rigid bar structural system is shown in figure 1(b). 
All forces of the bar 1 1A B−  and 2 2A B−  are performed by the 
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moment summation acting at point 1A and 2B , respectively, i.e.  

1 1 0
2 3 2 sin
3

k Y Y a aF tω⎛ ⎞− =⎜ ⎟
⎝ ⎠

                                                (1) 

0
1 1 2

3 2 2 3 0
3 4 3 3
I aY maY cY k Y Y a ak Y
a

⎛ ⎞+ + + − + =⎜ ⎟
⎝ ⎠

&& && &                     (2) 

Substituting 1Y of equation (1) into equation (2), the motion 
equation can be established by variable ( )Y t of the generalized 
coordinate leads to  

( ) ( ) ( ) ( )MY t CY t KY t F t+ + =&& &                                                (3) 

in which 0
2

3
43

I mM
a

= +  is the generalized mass matrix, 

3
cC =  is the generalized damping matrix  

23K k=  is the generalized stiffness vector and 

0
4( ) sin
3

F t F tω= −  is the generalized input force. 

0I  is the mass moment of inertia. 
m  is the total mass. 

The input estimation algorithm is a calculation method using 
the state space. Therefore, the state equation and the 
measurement equation have to be constructed before applying 
this method. In order to satisfy this situation, the equality, 

( )
T

X t Y Y⎡ ⎤= ⎣ ⎦
&  is used to transfer the movement equation to 

the state space form. The continuous-time state equation and 
measurement equation of the structure system can be presented 
as follows:  

( ) ( ) ( ),X t AX t BF t= +&                                                         (4) 
( ) ( ),Z t HX t=                                                                    (5) 

in which  

1 1

0
,

I
A

M K M C− −

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 

1

0
,B

M −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

[ ]1 0H =  
A and B are both constant matrices composed of the nth 

natural frequency and the inertia moment of the structure 
system. ( )X t  is the modal state vector. ( )F t  is the input 
dynamic loading. ( )Z t  is the observation vector, and H  is the 
measurement matrix. Generally speaking, there always exists 
the noise turbulence in the practical engineering environment. 
Nevertheless, equations (4) and (5) do not take the noise 
turbulence into account. In order to construct the statistic model 
of the system state characteristics, a noise disturbance term, 
which can reflect these statistical characteristics of the state, 
will need to be added into these two equations. For this reason, 
the continuous-time state equation (4) can be sampled with the 
sampling interval, tΔ , to obtain the discrete-time statistic 
model of the state equation shown as the following [13]:  

( 1) ( ) [ ( ) ( )]X k X k G k w k+ = Φ + Γ +                                         (6) 
where 

( ) ( ) ( )
T

X k Y k Y k⎡ ⎤=⎣ ⎦
&

 

 

exp( )A tΦ = Δ  

[ ]{ }
( 1)

exp ( 1)
k t

k t
A k t Bdτ τ

+ Δ

Δ
Γ = + Δ −∫  

Φ  is the state transition matrix. ( )X k  is the discrete state 

vector. Γ  is the input matrix. tΔ  is the sampling interval. 
( )G k  is the sequence of deterministic acceleration input, and 
( )w k  is the processing error vector, which is assumed as the 

Gaussian white noise. In the equation (6), when describing the 
active characteristics of the structure system, the additional 
term, ( )w k , can be used to represent the uncertainty in a 
numerical manner. The uncertainty could be the random 
disturbance, the uncertain parameters, or the error due to the 
over-simplified assumption of numerical models. Note that 

{ }( ) ( )TE w k w k  kjQδ= , 2 2w n nQ Q I ×= × , Q  is the discrete- 

time processing noise covariance matrix. kjδ  is the Kronecker 

delta function.  
In order to additionally consider the measurement noise, 

equation (3) is then expressed as  
( ) ( ) ( )Z k HX k v k= +                                                            (7) 
( )Z k is the discrete observation vector. ( )v k  represents the 

measurement noise vector and is assumed as the Gaussian 
white noise with zero mean and the variance, 

{ }( ) ( )T
kjE v k v k Rδ= , 2 2v n nR R I ×= × , R  is the discrete-time 

measurement noise covariance matrix. 

 
Fig. 1:(a) Considered rigid bar structural system. (b) Proposed 

displacement and joined forces of the rigid bar structural system [14].  

World Academy of Science, Engineering and Technology
International Journal of Civil and Environmental Engineering

 Vol:4, No:5, 2010 

116International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
15

32
.p

df



 

 

III. FUZZY INPUT ESTIMATION METHOD  
The fuzzy estimator are accelerated and weighted by the 

fuzzy accelerating factor of the processing noise covariance 
matrix and weighting factor of the input estimation method 
proposed based on the fuzzy logic inference system. The 
presented method can inversely estimate the unknown inputs 
by applying the active reaction of the structure system. This 
method is composed of the fuzzy Kalman filter without the 
input term and the fuzzy weighted recursive least square 
estimator. The fuzzy Kalman filter can produce the residual 
innovation sequence, which contains the bias or systematic 
error caused by the unknown time-varying inputs, and the 
variance or random error caused by the measurement error. 
Therefore, the estimator utilizes the innovation sequence to 
estimate the inputs over time by adopting the fuzzy weighted 
recursive least square method. The Kalman filter without the 
input term is shown as follows [13]: 
The state prediction is 

( / 1) ( 1/ 1)X k k X k k− = Φ − −                                              (8) 
The prediction error covariance matrix is  

( / 1) ( 1/ 1) T TP k k P k k Q− = Φ − − Φ + Γ Γ                             (9) 
The covariance of residual is ( )S k  

( ) ( / 1) TS k HP k k H R= − +                                                 (10) 
The Kalman gain is 

1( ) ( / 1) ( )TK k P k k H S k−= −                                                 (11) 
The filter error covariance matrix is expressed by 

( )( / ) [ ] ( / 1)P k k I K k H P k k= − −                                       (12) 
The bias innovation produced by the measurement noise and 

input disturbance is expressed by 
( ) ( ) ( / 1)Z k Z k HX k k= − −                                               (13) 

And the state filter value is expressed as 
( / ) ( / 1) ( ) ( )X k k X k k K k Z k= − + .                                  (14) 

The equations of the recursive least square estimator are as 
follows: 
The sensitivity matrices are ( )B k  and ( )M k  

( ) [ ( 1) ]B k H M k I= Φ − + Γ                                                 (15) 
( ) [ ( ) ][ ( 1) ]M k I K k H M k I= − Φ − +                                   (16) 

The correction gain is expressed as 
111 1 1( ) (( ) ( ) ( ) ( ) ( ) )T T

b b bB B k BK P k k k k kk P Sγ γ
−− −⎡ ⎤⎣ ⎦= − − +    (17) 

where γ  is the weighting factor. The error covariance of the 
input estimation process is 

[ ] 1( ) 1( ) ( ) ( )b b bI K B k PP k k kγ −= − −                                   (18) 
The estimated input force is 

( ) ( 1) ( ) ( ) ( ) ( 1)bF k F k K k Z k B k F k
∧ ∧ ∧⎡ ⎤

= − + − −⎢ ⎥
⎣ ⎦

                 (19) 

Above equations (12) to (18), a superscript ‘−’ indicates 
filter estimation. ( / 1)X k k −  is the state estimation, 

( / 1)P k k −  is the state estimation error covariance, ( )Z k  is the 
residual of predictor, ( )S k is the innovation covariance, 

( )K k is the Kalman gain, ( / )X k k is the state filter, ( / )P k k is 
the state filter error covariance. Where ( )Z k  is the bias 
innovation produced by the measurement noise and input 
disturbance, ( )bK k  is the correction gain. Besides, ( )B k  and 

( )M k  are the sensitivity matrices. γ  is the weighting factor. 
( )bP k  is the error covariance of the input estimation process 

and ˆ ( )F k  is the estimated dynamic inputs. 
Some parameters of filter must be obtained before filtering 

process. Such as, the state transition matrix of the structure 
system, Φ , the measurement matrix, H , the discrete-time 
processing noise covariance matrix, Q  and the discrete-time 
measurement noise covariance matrix, R . The on-line state 
estimation, ( / 1)X k k −  and state estimation error covariance, 

( / 1)P k k −  of the filter will be acquired when the observation 
vector is unceasingly input immediately after the initial 
conditions 0X  and 0P  are drawn into the estimator. ( )K k  gets 
smaller as the processing noise covariance matrix, Q  and the 
state filter error covariance get smaller according to equations 
(9) and (11), indicate that the new measurement is mitigating to 
the state predicted correction. ( )K k  gets smaller as the 
measurement noise covariance matrix, R  get larger according 
to equations (10) and (11), that is to say, the measurement error 
is mitigating to the state estimation of the estimator. In other 
words, the Kalman gain ( )K k depends on the vR  and wQ . The 
above-mentioned is an important principle and a key problem 
that the appropriate vR  and wQ  can be chosen in accordance 
with the system property and the magnitude of noise 
interference in the estimation process. vR  can be chosen in 
accordance with the precision of the measurement instrument. 

wQ  can be chosen in accordance with the modular error of the 
system. The Kalman gain can be slightly corrected with the 
higher precision of the measurement instrument, this is to say, 
the modular error of the system change from big to small. For 
this reason, the processing noise covariance can be defined as 
following: 

( )( 1) ( ) 10 k
w wQ k Q k α+ = ×                               (20) 

where ( )kα  is the fuzzy accelerating factor, which is chosen in 
the interval, [ ]1,1− . The estimation precision gets better as the 

( )kα  get smaller. On the contrary, the estimation precision 
gets worse as the ( )kα  get larger. 

The weighting factor ( )kγ  is important another parameter 
which affecting the estimation precision in the estimation 
process. It also plays the role as an adjustable parameter to 
control the bandwidth of estimator or the gain magnitude of 
recursive least square estimator. It can operate at each step 
based on the innovation produced by the Kalman filter. 
Furthermore, the weighting factor ( )kγ  is employed to 
compromise between the tracking capability and the loss of 
estimation precision. The fuzzy estimator in this paper is 
proposed based on the fuzzy logic inference system. The 
processing noise covariance and the weighting factor can be 
adjusted by means of the each step innovation produced by the 
Kalman filter. The fuzzy logic system includes four basic 

World Academy of Science, Engineering and Technology
International Journal of Civil and Environmental Engineering

 Vol:4, No:5, 2010 

117International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
15

32
.p

df



 

 

components, which are the fuzzy rule base, fuzzy inference 
engine, fuzzifier, and defuzzifier. The value of fuzzy logic 
system input, ( )kθ , may be chosen within the interval, [0,1] . 
The Pythagorean theorem with the transverse axle (time, t) and 
the vertical axle (residual of predictor, Z ) can be used to solve 
the length of the hypotenuse. In other words, the length of the 
hypotenuse is the variation rate of the residual in the sampling 
interval. The dimensionless input variable is defined as the 
following:  

( )
22

( )

( )

( )

( ) f

Z k

Z k

Z k t

Z k t

kθ

Δ

Δ Δ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

+

                                              (21) 

where ( ) ( ) ( 1)Z k Z k Z kΔ = − − , tΔ  is the sampling 
interval, let 1ft = . The fuzzy sets for ( )kθ , ( )kα and ( )kγ  
are labeled in the linguistic terms of EP (extremely large 
positive), VP (very large positive), LP (large positive), MP 
(medium positive), SP (small positive), VS (very small 
positive), and ES (extremely small). A fuzzy rule base is a 
collection of fuzzy IF-THEN rules which are shown in Table 1. 
 

TABLE I THE FUZZY RULE BASE 

    Input variable, ( )kθ  

    ES VS SV MV LV VL EP 

Output 
variable 

( )kα  EP VL LV MV SV VS ES 
( )kγ  EP VL LV MV SV VS ES 

 
where ( )kθ  is input variable, ( )kα  and ( )kγ  are the 

output variables of the fuzzy logic system, respectively. The 
fuzzier maps a crisp point ( )kθ  into a fuzzy set A. Therefore, 
the nonsingleton fuzzier can be expressed as the following [15]. 

( )( )
( )( )

( )

2

2exp
2

l
i

A
l
i

k x
k

θ
θ

σ
μ

⎛ ⎞−⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎝ ⎠

=                                     (22) 

( )( )A kθμ  decreases from 1 as ( )kθ  moves away from 

l
ix . ( )2l

iσ  is a parameter characterizing the shape of 

( )( )A kθμ .  

The Mamdani maximum-minimum inference engine is used 
in this paper. The max-min-operation rule of fuzzy implication 
of the output variable, ( )kα is shown as the following [15]. 

( )( ) ( )( ) ( ) ( )( ){ }1 1max min , ,j j j
i i

c d
B j i A A Bk k k kμ α μ θ μ θ α= = →

⎡ ⎤=
⎣ ⎦

    (23) 

The output variable, ( )kγ  can be similarly shown as 
following [15]: 

( )( ) ( )( ) ( ) ( )( ){ }1 1max min , ,j j j
i i

c d
B j i A A Bk k k kμ γ μ θ μ θ γ= = →

⎡ ⎤=
⎣ ⎦

    (24) 

where c is the fuzzy rule, and d is the dimension of input 
variables.  

The defuzzifier maps a fuzzy set B  to a crisp point Vα ∈ . 
The fuzzy logic system with the center of gravity is defined as 
the following [15]. 

( )( )
( )( )

1

1

( )

n l l
Bl

n l
Bl

y k
k

k

μ α
α

μ α
=

=

=
∑
∑

                                      (25) 

The defuzzifier of the output variable, ( )kγ  can be 
similarly shown as following: 

( )( )
( )( )

* 1

1

( )

n l l
Bl

n l
Bl

y k
k

k

μ γ
γ

μ γ
=

=

=
∑
∑

                                   (26) 

n  is the number of outputs. ly  is the value of the l th output. 

( )( )l
B kμ α  and ( )( )l

B kμ γ  represent the membership of 

( )l kα  and ( )l kγ  in the fuzzy set B, respectively. Substituting 

( )kα  of equation (25) in equation (20) and ( )* kγ  of equation 
(26) in equations (17) and (18) allows us to configure the fuzzy 
estimator. A flow chart of the computation for the application 
of the proposed input estimation algorithm is shown in Figure 
2. 
 

 
Fig. 2: Flowchart of the intelligent fuzzy input estimation algorithm. 
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IV. RESULTS AND DISCUSSION  
In order to demonstrate the accuracy and efficiency of the 

presented method in estimating the unknown input force, 
several numerical simulations are investigated. A rigid bar 
structural system is shown in figure 1(a). The displacement and 
joined forces of the rigid bar structural system is shown in 
figure 1(b). Assuming the bar 1 1A B−  is massless rigid bar with 
a total span, 0.6L m= . The bar 2 2A B−  is uniform mass rigid 
bar with a total mass, m=10kg. The stiffness, k, against the 
summation of the vertical stresses is 610 N/m. The damping 
coefficient, c = 10 N s/m. The estimation algorithm includes the 
fuzzy Kalman filter technique and the fuzzy weighted recursive 
least square method. The initial conditions and other 
parameters of simulation are shown as follows: 

4(0 / 0) 10P diag ⎡ ⎤= ⎣ ⎦ , ˆ (0) 0F = , 4(0) 10bP = , and (0)M  is 

assumed to be a zero matrix. The sampling interval, 0.001tΔ =  
and the total simulation time, 0.5ft s= . The weighting factor, 

γ , is adaptive weighted, fuzzy weighting and constant 
weighted function respectively 

. 
Example: Periodic sinusoidal dynamic loading 

The periodic sinusoidal dynamic loading is applied on the 
rigid bar structural system. These sinusoidal dynamic loading is 
shown as follows:  

0
4( ) sin
3

F t F tω= −                                                              (27) 

where 0 40F N= , and 10Hzω = . The periodic sinusoidal 
dynamic loading of the structure system is determined by using 
the presented approach when considering the influence due to 
the initial processing noise and the measurement noise of the 
system. The initial processing noise variance, 8(0) 10wQ = . 

The measurement noise variance, 2 1810vR σ −= = . By 
applying the active dynamic reaction which contains noise to 
the presented algorithm, the estimation result of the periodic 
sinusoidal dynamic loading can be obtained and plotted in Fig. 
3. The coarse estimation result in the initial response on 
account of the larger initial processing noise variance is shown 
in Fig. 3. The presented estimator has the property of faster 
convergence with the regulated processing noise variance in 
the estimation process. Fig. 4 shows that the estimator has great 
tracking performance for what the larger output variable, 

( )kα , can be chosen to generate the larger processing noise 
variance, ( )wQ k , according to equation (20). The estimator has 
great in reducing the effect of noise for what the smaller output 
variable, ( )kα , can be chosen to generate the smaller 
processing noise variance, ( )wQ k , when the unknown is 
steady input system. Fig. 5 shows that the smaller weighting 
factor can be chosen in the fuzzy recursive least square method 
when the larger unknown input the system. It should be noted 
that the faster the forgetting effect is, the lower the smoothing 
effect will be, that is, it introduces oscillation. The fuzzy 
weighting factor ( )kγ  is employed to compromise between the 

upgrade of tracking capability and the loss of estimation 
precision. 

 
Fig. 3: Estimation results for the periodic sinusoidal dynamic loading 

( 8(0) 10wQ = , 2 1810vR σ −= = , 10Hzω = ). 

 
Fig. 4: The varied value of output variable, ( )kα . 

 
Fig. 5: The varied value of fuzzy weighting factor, ( )kγ . 

 
The estimates of ( )F t  using the adaptive weighted factor 

are plotted in Fig. 6. The estimates of ( )F t  using the constant 
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weighting factor, 0.1γ =  and 0.95, are plotted in Fig. 7 and 8 
respectively. The estimation results show that the tracking 
performance of estimators is not good enough, and they are not 
suitable in reducing the effect of the noise. Moreover, the 
rapider input frequency ( 20Hz ) was taken into account during 
the simulation process. Figure 9 demonstrates that the 
presented estimator has good estimation resolution under larger 
initial process noise variance and more rapid input frequency. 

 

 
Fig. 6: Estimation result of the periodic sinusoidal dynamic 
loading using the adaptive weighted factor, γ  ( 8(0) 10wQ = , 

2 1810vR σ −= = ). 
 

 
Fig. 7: Estimation result of the periodic sinusoidal dynamic loading 

using the constant weighted factor, 0.1γ =  

( 8(0) 10wQ = , 2 1810vR σ −= = ). 
 

V. CONCLUSIONS 
This study proposed the intelligent fuzzy input estimator 

combing the fuzzy Kalman filter technology with the fuzzy 
weighting recursive least square method to estimate the 
periodic sinusoidal dynamic loading of a rigid bar structural 
system under improper initial modeling and measurement noise 
conditions. In this study, the suitable values of the 

measurement noise covariance and the fuzzy weighting factor 
can be chosen to cope with the uncertain restricted conditions, 
such as the precision of actual measuring equipments, and the 
simplified or imprecise mathematical model, and to enhance 
the estimation performance. 

 
Fig. 8: Estimation result of the periodic sinusoidal dynamic 

loading using the constant weighted factor, 0.95γ =  

( 8(0) 10wQ = , 2 1810vR σ −= = ).

Fig. 9: Estimation results for the periodic sinusoidal dynamic loading 
( 8(0) 10wQ = , 2 1810vR σ −= = , 20Hzω = ). 

 
According to the results of the simulation and the 

computation, the fuzzy estimator has the properties of fast 
tracking and efficiency against noise because it is accelerated 
and weighted by the accelerating factor, ( )kα  and weighting 
factor, ( )kγ  of the proposed method based on the fuzzy logic 
inference system. The superior estimation capability of the 
proposed method was shown by comparing it with the adaptive 
weighting function and the constant weighting factor input 
estimation method. Results also demonstrate that this method 
has the properties of better target tracking capability, more 
efficient noise and measurement bias reduction and faster 
convergence in the initial response. Future study includes the 
extension of this study to non-uniform loading distributing 
using the analytical method. 
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