

Abstract—Software security is a general term used to any type of

software architecture or model in which security aspects are
incorporated in this architecture. These aspects are not part of the main
logic of the underlying program. Software security can be achieved
using a combination of approaches including but not limited to secure
software designs, third part component validation, and secure coding
practices. Memory safety is one feature in software security where we
ensure that any object in memory is have a valid pointer or a reference
with a valid type. Aspect Oriented Programming (AOP) is a paradigm
that is concerned with capturing the cross-cutting concerns in code
development. AOP is generally used for common cross-cutting
concerns like logging and Database transaction managing. In this paper
we introduce the concepts that enable AOP to be used for the purpose
of memory and type safety. We also present ideas for extending AOP
in software security practices.

Keywords—Aspect oriented programming, programming
languages, software security, memory and type safety.

I. INTRODUCTION

YPE safety and memory safety is regarded as one of the
main pillars in secure systems. Systems are vulnerable once

protected memory is accessed. Protected memory that is part of
a secure system could contain Level 1 sensitive data or
instructions. An attacker could instrument and write an
interception segment to protected memory or create a
trampoline jump to some unintended-unwanted malicious code.
Programmers who use C and C++ languages must manage their
use of memory to ensure safety. Any allocation, reference, or
deletion to memory must be done explicitly via code. A simple
mistake on the programmer’s side could lead to unwanted
consequences. See Fig. 1, for each iteration of the infinite while
loop, the program allocates a new byte in memory. The pointer
pointing to this byte will point to another newly allocated
memory address on every remaining iteration. The previous
byte will not be referenced any more. Something simple like
this will cause total memory consumption in a small amount of
time. Fortunately, newer systems will detect abnormal use of
memory and will kill any process for that program and release
back the memory. This was not the case in older operating
systems. We were able to compile this code using an older
Borland C++ Compiler and run it on windows 98. This resulted
in the crash of the operating system and a hard restart to the
machine.

AOP is relatively a newer paradigm in programming [2], in
which, cross cutting concerns which are not part of the main
code logic of some programs are written in separate segments

Amjad Nusayr is with University of Houston-Victoria, United States (e-

mail: nusayra@uhv.edu).

called aspects and then are weaved into their proper location
based on user defined expressions. Most of these expressions
are code based (i.e., the code is weaved into specific code
locations). AOP reinforces the concepts of encapsulation and
abstraction by guaranteeing that base logic code and cross
cutting concerns are both in written in separate programming
modules.

Fig. 1 A continuous one-byte memory leak

This paper presents ideas for extending the use of AOP as a
tool to detect possible memory violations and type safety. Our
contribution in this paper is the use of the AOP for the general
domain of security safety. The rest of the paper is structed as
follows: Section II is a background. Section III presents what is
needed to extend AOP for such use. Section IV presents related
work followed by the conclusion and future work is in Section
V.

II. BACKGROUND

A. Memory and Type Safety

One of the most important principles of a secure system is
memory safety [1], [3]. This is done by ensuring each memory
access is bounded to a valid object. In C and C++ this is made
by having pointers point to valid memory objects. In other
memory managed languages like Java and the .Net based
programming languages, this is made by guaranteeing that the
garbage collector in the underlying framework is working at the
right time and the right memory location. Functional
programming languages on the other hand do not expose any
direct pointer or memory location to the programmer, thus,
guaranteeing memory and type safety to the programmer. Yet
the biggest issue with memory and type safety is the fact that
achieving this goal comes with at a price. Some of the safety
checks can be done at a static level but most checks must be
done at a dynamic level while code is executing. This means
that the underlying system executing the code will have much
overhead time to assure safety. This is one reason many
programmers still prefer C or C++ over memory managed
languages like Java and C#.

Extending the Aspect Oriented Programming
Joinpoint Model for Memory and Type Safety

Amjad Nusayr

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:9, 2022

390International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
68

7.
pd

f

Memory and type safety have a greater impact when it comes
to code that executes on customized operating systems and/or
fewer hardware resources. We consider the AVR based MicaZ
[4]. The CPU’s register-space is mapped to the bottom of the
address space where the register 28 and register 29 are
frequently used for memory indexing. The code in Fig. 2 will
cause a memory fault and memory corruption.

Fig. 2 Dereferencing a pointer after null in AVR MicaZ

Next, we discuss the two major categories in memory and
type safety; spatial memory safety and temporal memory safety.
Spatial memory safety ensures that all pointers are pointing to
a valid and intended memory object (i.e., memory dereferences
will be to a valid object in memory). This can happen for a
variety of reasons. These includes, but not limited to, pointer
arithmetic, singleton pointers, arrays out of bounds or
unchecked arrays, pointers to offset of the start of a memory
objects. Memory objects are allocated and destructed in an
explicit way using function like malloc and free respectively.

Other languages like Java and C# enforce memory safety at
runtime. Managing the memory without the use of pointers has
its overhead time. Both languages utilize a garbage collector to
reclaim unused memory.

Temporal memory safety is achieved by ensuring that all
memory dereferences are valid at runtime. It also ensures that
memory associated with a prior object that has been freed is
totally reclaimed by the underlying system and no longer
associated with the object.

Violations in temporal safety can happen in several ways.
One of the most popular is when a location in memory is read
before it is written. Another example is to return data from a
prior object that had the same address as a current object in
memory. Fig. 3 shows an example to a violation where a pointer
is no longer pointing to a valid object in memory because the
object has been freed. A statement to access the memory will
cause this violation (i.e., *b = 0;). It is even more sophisticated
when it comes parallel programming and shared memory.
Violations can simply occur because of a race condition.
Having the need to constantly monitor shared access space is
imperative.

Fig. 3 Example of a temporal violation

B. Aspect Oriented Programming

AOP is a programming paradigm used for constructing and
implementing segments of code that are otherwise considered
orthogonal to the underlying program code logic. These
segments of code are referred to as cross cutting concerns and
they are scattered into many locations in the base program in a

non-local and a non-modular matter. AOP enables
programmers to write this orthogonal code into their own
encapsulated containers, called aspects, and then insert them
into their proper locations in a step called weaving.

AOP includes several concepts that are explained:
1- Aspect: Similar to a class in object-oriented programming

languages, this is the main container that holds all other
instructions and definitions that are used to weave code into
some underlying program. The word “aspect” in AspectJ,
a popular AOP language, is a reserved keyword.

2- Advice: Is the code that will be weaved, or instrumented to
some underlying program. An advice has a type. Usually
there are three types of advices, the “before” advice, the
“after” advice, and the “around” advice.

3- Joinpoint or point-cut designator: Is a well-defined point in
a program where advice will be weaved in. This point could
be code-based, like a function call, or a back-edge of a loop.
It also could be a point in time; absolute or wall clock time
or based on any time constraint. Joinpoints could be data
based, where weaving of an advice is centered over
concepts in data space

4- Point-cut expression: Is simply an expression that defines
where advice is to be weaved. Weaving can occur at
multiple source code locations or programs in one step. Fig.
5 shows two cutting concerns in four different programs.

A point-cut expression could have its own identifier and
allows the program to specify one or more targets in the
underlying code. The point-cut expression example in Fig. 4
targets two specific joinpoints. In this example, the point-cut
expression is interpreted as a call to the method foo(int) of type
Class C1, or the execution of the method bar(int) of the class
C2.

Fig. 4 Definition of a pointcut

Fig. 5 Two concerns being weaved into different programs

AOP concepts enable developers to isolate aspects like

//point cut expression
pointcut p1() :

 call (void C1.foo(int)) ||
 execution (voidC2.bar(int))

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:9, 2022

391International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
68

7.
pd

f

security and privacy concerns. This results in better code
semantics, easier maintainability, more modularity, and code
reuse. This makes AOP a natural fit to be used for such purpose.
We still can observe that AOP can be extended to included
custom designed point-cut expressions and joinpoints that
target type and memory safety.

III. EXTENDING AOP

There is a clear link in using AOP for the purpose of memory
and type safety. Yet AOP does not fully support all needed
functionalities. The major part of our contribution here is to
detail how we plan to extend AOP joinpoint model and the
point-cut designators that will enable AOP to support the many
needs for memory and type safety.

The heart of what makes AOP so significant is the use of the
joinpoint model. This model was created on a practical basis.
For example, most of the joinpoints found in AspectC++ or
AspectJ are code based joinpoint. That means the programmer
needs to define his/her own set of “where in the code” the
weaving must happen. An example is weave code before the
execution of certain basic blocks in code. We find this model to
be useful but on the other hand limiting when it comes to using
AOP in the bigger picture for memory and Type safety.

Achieving goals in memory and type safety means that one
must have some program monitoring for this cause while a
program is in execution. We propose a more extensive set of
point-cut designators to achieve these goals which fall into the
following categories:
1 Code based: Joinpoints over the code space
2 Time based: Joinpoint that are based on time
3 Data based: Dynamic joinpoint based on memory

constraints
Even though these three categories could be used for many

memory and type safety features, we limit extending the AOP
to be used in two domains; spatial memory safety and temporal
memory safety. Next we detail extending AOP in the categories
above.
1) Code Based: This is the traditional category that AOP

already includes. Most AOP implementations like AspectJ
already include a wide set of joinpoint definitions that are
common across the domain of AOP. These include method
calls, method executions.

In order to extend the AOP joinpoint code based model for
memory and type safety, we propose including more fine-
grained, custom made, joinpoints. The first two are in Fig. 6.

Fig. 6 BoundCheck joinpoint

The two joinpoints would target the following scenarios
illustrated in Figs. 7-9 respectively:

1- Dynamic memory buffer is allocated, and the buffer has an
overflow.

Fig. 7 Upper bound violation

2- A violation via a direct write operation to the memory

Fig. 8 Lower bound violation

3- An invalid pointer that has been dereferenced

Fig. 9 Dereference violation

The third proposed joinpoint for this category is in Fig. 10.

Fig. 10 Joinpoint for each memory access

This joinpoint represents an access operation to a
dynamically created object in memory. This joinpoint is
overloaded and has two versions. The first version is parameter-
less version. Advice that will be associated to this joinpoint will
be weaved at every dereferencing operation. The second
version is more precise and will target any dereferencing
operation associated with a provided pointer. For example,
adding “a[10]=0;” statement at the end of Fig. 3 is one example
where this joinpoint in code resides.
2) Time Based: We have to cover situations in which a

memory violation is, for example, consuming up memory
either faster than it needs to or in some abnormal manner
that otherwise, the program is not supposed to do so.

To address these points, we propose two joinpoints for this
category as in Fig. 11.

Fig. 11 Time Based joinpoint

Advice attached to any pointcut expression that uses the first
joinpoint, everyNth(int), will execute every nth time unit. This
joinpoint gives the programmer total control over how
frequently data need to be collected for about a certain object or
objects in memory. This will enable the programmer to have
some capability for memory sampling.

//1- dynamic joinpoint for
//upper boundary check
upperBoundCheck()
//2- dynamic joinpoint for
//lower boundary check
lowerBoundCheck()

a[MAX+10]=x;//MAX is the upper bound

a[-10]=x; //lower bound violation

char *c=a+MAX;
b=b+10;
*a=’A’; // violation

// pointer or reference joinpoint
validObject(void *)
validObject()

// Runs every N units in time
everyNth(int)
// Runs at every some absolute
// time
timeAbs(time s, time e)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:9, 2022

392International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
68

7.
pd

f

The second joinpoint, timeAbs(time), is a simple and power
addition. Advice attached to this joinpoint starts executing at a
certain wall clock time until some end time. Scenarios for this
model is when memory objects need to be monitored as a
certain time.
3) Data Based: The current AOP joinpoint model that deals

with data fields is only limited to object fields. Dynamic
memory allocation happens in actual methods or functions.
We propose extending the semantics for this model to
include allocations that occur in the heap memory rather
than the stack We introduce the following joinpoint in Fig.
12:

Fig. 12 Data based joinpoints

This advice for this joinpoint is bound with some memory
object. This allows the programmer to monitor the behavior of
that object in memory and the references/pointer in bound to the
object.

Extending the AOP for the purpose of memory and type
safety can be illustrated in Fig. 13, where a program executing
be can observed from three different perspectives.

Fig. 13 AOP of proposed joinpoint model categories

IV. RELATED WORK

Extending the AOP framework in general has been a reported
in several research areas. Bodden & Havelund [5] have
extended the pointcut model to create a Racer Algorithm to find
subtle data races in memory. Llewellyn-Jones et al. [6] present
a formalization for how to apply cross cutting concerns for
larger networked systems. The earliest work found on
extending the joinpoint model was made by Ubayashi et al. [7].

Memory and type safety is still in continuous research. This
is because unmanaged-memory based program languages are
still widely used. Duck and Yap [8] introduce the notion of
dynamically typed C/C++ to detect such errors by dynamically
checking the "effective type" of each object before the use at
runtime. They also introduced a system for enforcing type and
memory safety using a combination of pointers, type meta data
and type/bounds check instrumentation. The work presented in
[9], [3] show that compiler based dynamic checks can cause
undesired overhead. They present a novel “toolchain” avoid
these runtime costs.

Although some ideas fall in this general category [10], most
of the work found the research does not fully utilize the
capabilities and semantics of AOP to be used in memory and
type-safety.

V. CONCLUSION

This paper presented ideas for extending the normal AOP
concepts to support the notion of memory and type safety. We
have presented the limitations in the current AOP joinpoint
model for this case and introduced three main categories in
which the joinpoint model can be extended for the purpose of
achieving memory and type safety. We have proposed to add a
time based and the data based categories that are necessary to
facilitate the needs we are looking for.

The weaving process ideas required for the new joinpoint
offered are out of the scope of this paper. This, by itself, is a
bigger topic since both static and dynamic/run time weaving is
necessary.

Our work is still in the “preliminary phase”. Newer tools for
reverse engineering such as Ghidra and IDA pro could be
utilized to find the new joinpoints proposed and insert the
proper advice in these locations.

REFERENCES
[1] S. L. Kanniah and M. N. ri bin Mahrin, “Secure software development

practice adoption model: A delphi study,” J. Telecommun. Electron.
Comput. Eng., vol. 10, no. 2–8, pp. 71–75, 2018.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An Overview of AspectJ,” in Proceedings of the 15th
European Conference on Object-Oriented Programming, 2001, pp. 327–
353.

[3] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, “Efficient
memory safety for TinyOS,” in SenSys’07 - Proceedings of the 5th ACM
Conference on Embedded Networked Sensor Systems, 2007, pp. 205–218.

[4] C. Technology, “MICAz: Wireless Measurement System,” Prod.
Datasheet, pp. 4–5, 2008.

[5] E. Bodden and K. Havelund, “Aspect-oriented race detection in Java,”
IEEE Trans. Softw. Eng., vol. 36, no. 4, 2010.

[6] D. Llewellyn-Jones, Q. Shi, and M. Merabti, “Extending aop principles
for the description of network security patterns,” in Cyberpatterns:
Unifying Design Patterns with Security and Attack Patterns, vol.
9783319044477, 2014.

[7] N. Ubayashi, “An AOP Implementation Framework for Extending Join
Point Models,” in Proceedings of ECOOP 2004 Workshop on Reflection,
AOP and Meta-Data for Software Evolution (RAM-SE’04, 2004, pp. 71–
81.

[8] G. J. Duck and R. H. C. Yap, “EffectiveSan: Type and memory error
detection using dynamically typed C/C++,” ACM SIGPLAN Not., vol. 53,
no. 4, pp. 181–195, 2018.

[9] J. Regehr, N. Cooprider, W. Archer, and E. Eide, “Efficient type and
memory safety for tiny embedded systems,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems - ASPLOS, 2006.

[10] [A. usayr, J. Cook, and G. Rahnavard, “TEAMS: A special-purpose AOP
framework for runtime monitoring,” in Proceedings - 23rd IEEE
International Symposium on Software Reliability Engineering
Workshops, ISSREW 2012, 2012.

// Attached to a memory object
targetObject(void *)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:9, 2022

393International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
68

7.
pd

f

