
 

 

 
Abstract—Software security is a general term used to any type of 

software architecture or model in which security aspects are 
incorporated in this architecture. These aspects are not part of the main 
logic of the underlying program. Software security can be achieved 
using a combination of approaches including but not limited to secure 
software designs, third part component validation, and secure coding 
practices. Memory safety is one feature in software security where we 
ensure that any object in memory is have a valid pointer or a reference 
with a valid type. Aspect Oriented Programming (AOP) is a paradigm 
that is concerned with capturing the cross-cutting concerns in code 
development. AOP is generally used for common cross-cutting 
concerns like logging and Database transaction managing. In this paper 
we introduce the concepts that enable AOP to be used for the purpose 
of memory and type safety. We also present ideas for extending AOP 
in software security practices.  
 

Keywords—Aspect oriented programming, programming 
languages, software security, memory and type safety.  

I. INTRODUCTION 

YPE safety and memory safety is regarded as one of the 
main pillars in secure systems. Systems are vulnerable once 

protected memory is accessed. Protected memory that is part of 
a secure system could contain Level 1 sensitive data or 
instructions. An attacker could instrument and write an 
interception segment to protected memory or create a 
trampoline jump to some unintended-unwanted malicious code. 
Programmers who use C and C++ languages must manage their 
use of memory to ensure safety. Any allocation, reference, or 
deletion to memory must be done explicitly via code. A simple 
mistake on the programmer’s side could lead to unwanted 
consequences. See Fig. 1, for each iteration of the infinite while 
loop, the program allocates a new byte in memory. The pointer 
pointing to this byte will point to another newly allocated 
memory address on every remaining iteration. The previous 
byte will not be referenced any more. Something simple like 
this will cause total memory consumption in a small amount of 
time. Fortunately, newer systems will detect abnormal use of 
memory and will kill any process for that program and release 
back the memory. This was not the case in older operating 
systems. We were able to compile this code using an older 
Borland C++ Compiler and run it on windows 98. This resulted 
in the crash of the operating system and a hard restart to the 
machine. 

AOP is relatively a newer paradigm in programming [2], in 
which, cross cutting concerns which are not part of the main 
code logic of some programs are written in separate segments 
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called aspects and then are weaved into their proper location 
based on user defined expressions. Most of these expressions 
are code based (i.e., the code is weaved into specific code 
locations). AOP reinforces the concepts of encapsulation and 
abstraction by guaranteeing that base logic code and cross 
cutting concerns are both in written in separate programming 
modules. 

 

 

Fig. 1 A continuous one-byte memory leak 
 

This paper presents ideas for extending the use of AOP as a 
tool to detect possible memory violations and type safety. Our 
contribution in this paper is the use of the AOP for the general 
domain of security safety. The rest of the paper is structed as 
follows: Section II is a background. Section III presents what is 
needed to extend AOP for such use. Section IV presents related 
work followed by the conclusion and future work is in Section 
V.  

II. BACKGROUND  

A. Memory and Type Safety  

One of the most important principles of a secure system is 
memory safety [1], [3]. This is done by ensuring each memory 
access is bounded to a valid object. In C and C++ this is made 
by having pointers point to valid memory objects. In other 
memory managed languages like Java and the .Net based 
programming languages, this is made by guaranteeing that the 
garbage collector in the underlying framework is working at the 
right time and the right memory location. Functional 
programming languages on the other hand do not expose any 
direct pointer or memory location to the programmer, thus, 
guaranteeing memory and type safety to the programmer. Yet 
the biggest issue with memory and type safety is the fact that 
achieving this goal comes with at a price. Some of the safety 
checks can be done at a static level but most checks must be 
done at a dynamic level while code is executing. This means 
that the underlying system executing the code will have much 
overhead time to assure safety. This is one reason many 
programmers still prefer C or C++ over memory managed 
languages like Java and C#.  
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Memory and type safety have a greater impact when it comes 
to code that executes on customized operating systems and/or 
fewer hardware resources. We consider the AVR based MicaZ 
[4]. The CPU’s register-space is mapped to the bottom of the 
address space where the register 28 and register 29 are 
frequently used for memory indexing. The code in Fig. 2 will 
cause a memory fault and memory corruption.  

 

 

Fig. 2 Dereferencing a pointer after null in AVR MicaZ 
 

Next, we discuss the two major categories in memory and 
type safety; spatial memory safety and temporal memory safety. 
Spatial memory safety ensures that all pointers are pointing to 
a valid and intended memory object (i.e., memory dereferences 
will be to a valid object in memory). This can happen for a 
variety of reasons. These includes, but not limited to, pointer 
arithmetic, singleton pointers, arrays out of bounds or 
unchecked arrays, pointers to offset of the start of a memory 
objects. Memory objects are allocated and destructed in an 
explicit way using function like malloc and free respectively. 

Other languages like Java and C# enforce memory safety at 
runtime. Managing the memory without the use of pointers has 
its overhead time. Both languages utilize a garbage collector to 
reclaim unused memory.  

Temporal memory safety is achieved by ensuring that all 
memory dereferences are valid at runtime. It also ensures that 
memory associated with a prior object that has been freed is 
totally reclaimed by the underlying system and no longer 
associated with the object. 

Violations in temporal safety can happen in several ways. 
One of the most popular is when a location in memory is read 
before it is written. Another example is to return data from a 
prior object that had the same address as a current object in 
memory. Fig. 3 shows an example to a violation where a pointer 
is no longer pointing to a valid object in memory because the 
object has been freed. A statement to access the memory will 
cause this violation (i.e., *b = 0;). It is even more sophisticated 
when it comes parallel programming and shared memory. 
Violations can simply occur because of a race condition. 
Having the need to constantly monitor shared access space is 
imperative. 

 

 

Fig. 3 Example of a temporal violation 

B. Aspect Oriented Programming  

AOP is a programming paradigm used for constructing and 
implementing segments of code that are otherwise considered 
orthogonal to the underlying program code logic. These 
segments of code are referred to as cross cutting concerns and 
they are scattered into many locations in the base program in a 

non-local and a non-modular matter. AOP enables 
programmers to write this orthogonal code into their own 
encapsulated containers, called aspects, and then insert them 
into their proper locations in a step called weaving.  

AOP includes several concepts that are explained:  
1- Aspect: Similar to a class in object-oriented programming 

languages, this is the main container that holds all other 
instructions and definitions that are used to weave code into 
some underlying program. The word “aspect” in AspectJ, 
a popular AOP language, is a reserved keyword. 

2- Advice: Is the code that will be weaved, or instrumented to 
some underlying program. An advice has a type. Usually 
there are three types of advices, the “before” advice, the 
“after” advice, and the “around” advice.  

3- Joinpoint or point-cut designator: Is a well-defined point in 
a program where advice will be weaved in. This point could 
be code-based, like a function call, or a back-edge of a loop. 
It also could be a point in time; absolute or wall clock time 
or based on any time constraint. Joinpoints could be data 
based, where weaving of an advice is centered over 
concepts in data space 

4- Point-cut expression: Is simply an expression that defines 
where advice is to be weaved. Weaving can occur at 
multiple source code locations or programs in one step. Fig. 
5 shows two cutting concerns in four different programs. 

A point-cut expression could have its own identifier and 
allows the program to specify one or more targets in the 
underlying code. The point-cut expression example in Fig. 4 
targets two specific joinpoints. In this example, the point-cut 
expression is interpreted as a call to the method foo(int) of type 
Class C1, or the execution of the method bar(int) of the class 
C2.  

 

 

Fig. 4 Definition of a pointcut 
 

 

Fig. 5 Two concerns being weaved into different programs 
 
AOP concepts enable developers to isolate aspects like 

//point cut expression  
pointcut p1() : 

 call (void C1.foo(int)) || 
 execution (voidC2.bar(int)) 
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security and privacy concerns. This results in better code 
semantics, easier maintainability, more modularity, and code 
reuse. This makes AOP a natural fit to be used for such purpose. 
We still can observe that AOP can be extended to included 
custom designed point-cut expressions and joinpoints that 
target type and memory safety.  

III. EXTENDING AOP 

There is a clear link in using AOP for the purpose of memory 
and type safety. Yet AOP does not fully support all needed 
functionalities. The major part of our contribution here is to 
detail how we plan to extend AOP joinpoint model and the 
point-cut designators that will enable AOP to support the many 
needs for memory and type safety.  

The heart of what makes AOP so significant is the use of the 
joinpoint model. This model was created on a practical basis. 
For example, most of the joinpoints found in AspectC++ or 
AspectJ are code based joinpoint. That means the programmer 
needs to define his/her own set of “where in the code” the 
weaving must happen. An example is weave code before the 
execution of certain basic blocks in code. We find this model to 
be useful but on the other hand limiting when it comes to using 
AOP in the bigger picture for memory and Type safety.  

Achieving goals in memory and type safety means that one 
must have some program monitoring for this cause while a 
program is in execution. We propose a more extensive set of 
point-cut designators to achieve these goals which fall into the 
following categories: 
1 Code based: Joinpoints over the code space 
2 Time based: Joinpoint that are based on time 
3 Data based: Dynamic joinpoint based on memory 

constraints  
Even though these three categories could be used for many 

memory and type safety features, we limit extending the AOP 
to be used in two domains; spatial memory safety and temporal 
memory safety. Next we detail extending AOP in the categories 
above. 
1) Code Based: This is the traditional category that AOP 

already includes. Most AOP implementations like AspectJ 
already include a wide set of joinpoint definitions that are 
common across the domain of AOP. These include method 
calls, method executions.  

In order to extend the AOP joinpoint code based model for 
memory and type safety, we propose including more fine-
grained, custom made, joinpoints. The first two are in Fig. 6. 

 

 

Fig. 6 BoundCheck joinpoint 
 

The two joinpoints would target the following scenarios 
illustrated in Figs. 7-9 respectively: 

1- Dynamic memory buffer is allocated, and the buffer has an 
overflow.  

 

 

Fig. 7 Upper bound violation 
 

2- A violation via a direct write operation to the memory  
 

 

Fig. 8 Lower bound violation 
 

3- An invalid pointer that has been dereferenced  
 

 

Fig. 9 Dereference violation 
 

The third proposed joinpoint for this category is in Fig. 10.  
 

 

Fig. 10 Joinpoint for each memory access 
 

This joinpoint represents an access operation to a 
dynamically created object in memory. This joinpoint is 
overloaded and has two versions. The first version is parameter-
less version. Advice that will be associated to this joinpoint will 
be weaved at every dereferencing operation. The second 
version is more precise and will target any dereferencing 
operation associated with a provided pointer. For example, 
adding “a[10]=0;” statement at the end of Fig. 3 is one example 
where this joinpoint in code resides. 
2) Time Based: We have to cover situations in which a 

memory violation is, for example, consuming up memory 
either faster than it needs to or in some abnormal manner 
that otherwise, the program is not supposed to do so.  

To address these points, we propose two joinpoints for this 
category as in Fig. 11.  

 

 

Fig. 11 Time Based joinpoint 
 

Advice attached to any pointcut expression that uses the first 
joinpoint, everyNth(int), will execute every nth time unit. This 
joinpoint gives the programmer total control over how 
frequently data need to be collected for about a certain object or 
objects in memory. This will enable the programmer to have 
some capability for memory sampling. 

//1- dynamic joinpoint for 
//upper boundary check  
upperBoundCheck() 
//2- dynamic joinpoint for 
//lower boundary check 
lowerBoundCheck() 

a[MAX+10]=x;//MAX is the upper bound

a[-10]=x; //lower bound violation 

char *c=a+MAX;
b=b+10;  
*a=’A’; // violation 

// pointer or reference joinpoint 
validObject(void *)  
validObject()  

// Runs every N units in time 
everyNth(int) 
// Runs at every some absolute 
// time  
timeAbs(time s, time e) 
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The second joinpoint, timeAbs(time), is a simple and power 
addition. Advice attached to this joinpoint starts executing at a 
certain wall clock time until some end time. Scenarios for this 
model is when memory objects need to be monitored as a 
certain time.  
3) Data Based: The current AOP joinpoint model that deals 

with data fields is only limited to object fields. Dynamic 
memory allocation happens in actual methods or functions. 
We propose extending the semantics for this model to 
include allocations that occur in the heap memory rather 
than the stack We introduce the following joinpoint in Fig. 
12:  

 

 

Fig. 12 Data based joinpoints 
 

This advice for this joinpoint is bound with some memory 
object. This allows the programmer to monitor the behavior of 
that object in memory and the references/pointer in bound to the 
object.  

Extending the AOP for the purpose of memory and type 
safety can be illustrated in Fig. 13, where a program executing 
be can observed from three different perspectives.  

 

 

Fig. 13 AOP of proposed joinpoint model categories 

IV. RELATED WORK  

Extending the AOP framework in general has been a reported 
in several research areas. Bodden & Havelund [5] have 
extended the pointcut model to create a Racer Algorithm to find 
subtle data races in memory. Llewellyn-Jones et al. [6] present 
a formalization for how to apply cross cutting concerns for 
larger networked systems. The earliest work found on 
extending the joinpoint model was made by Ubayashi et al. [7].  

Memory and type safety is still in continuous research. This 
is because unmanaged-memory based program languages are 
still widely used. Duck and Yap [8] introduce the notion of 
dynamically typed C/C++ to detect such errors by dynamically 
checking the "effective type" of each object before the use at 
runtime. They also introduced a system for enforcing type and 
memory safety using a combination of pointers, type meta data 
and type/bounds check instrumentation. The work presented in 
[9], [3] show that compiler based dynamic checks can cause 
undesired overhead. They present a novel “toolchain” avoid 
these runtime costs.  

Although some ideas fall in this general category [10], most 
of the work found the research does not fully utilize the 
capabilities and semantics of AOP to be used in memory and 
type-safety.  

V. CONCLUSION  

This paper presented ideas for extending the normal AOP 
concepts to support the notion of memory and type safety. We 
have presented the limitations in the current AOP joinpoint 
model for this case and introduced three main categories in 
which the joinpoint model can be extended for the purpose of 
achieving memory and type safety. We have proposed to add a 
time based and the data based categories that are necessary to 
facilitate the needs we are looking for.  

The weaving process ideas required for the new joinpoint 
offered are out of the scope of this paper. This, by itself, is a 
bigger topic since both static and dynamic/run time weaving is 
necessary.  

Our work is still in the “preliminary phase”. Newer tools for 
reverse engineering such as Ghidra and IDA pro could be 
utilized to find the new joinpoints proposed and insert the 
proper advice in these locations.  
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// Attached to a memory object
targetObject(void *) 
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