**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31103

##### Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder

**Authors:**
Zhen Cheng,
Xinyu Dai,
Shujian Huang,
Jiajun Chen

**Abstract:**

**Keywords:**
natural language inference,
Generative Model,
explanation generation,
variational auto-encoder

**References:**

[1] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A multi-task benchmark and analysis platform for natural language understanding,” in [email protected], 2018.

[2] O.-M. Camburu, T. Rocktäschel, T. Lukasiewicz, and P. Blunsom, “e-snli: Natural language inference with natural language explanations,” in NeurIPS, 2018.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in NIPS, 2014.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[5] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” in EMNLP, 2015.

[6] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep conditional generative models,” in NIPS, 2015.

[7] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and S. Bengio, “Generating sentences from a continuous space,” in CoNLL, 2015.

[8] S. Zhao, J. Song, and S. Ermon, “Infovae: Information maximizing variational autoencoders,” ArXiv, vol. abs/1706.02262, 2017.

[9] T. Zhao, R. Zhao, and M. Eskénazi, “Learning discourse-level diversity for neural dialog models using conditional variational autoencoders,” in ACL, 2017.

[10] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR, vol. abs/1312.6114, 2013.

[11] B. MacCartney and C. D. Manning, Natural language inference. Citeseer, 2009.

[12] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in ICML, 2014.

[13] H. Shah and D. Barber, “Generative neural machine translation,” in NeurIPS, 2018.

[14] I. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. C. Courville, and Y. Bengio, “A hierarchical latent variable encoder-decoder model for generating dialogues,” in AAAI, 2016.

[15] T. Zhao, K. Lee, and M. Eskénazi, “Unsupervised discrete sentence representation learning for interpretable neural dialog generation,” in ACL, 2018.

[16] Y. Bao, H. Zhou, S. Huang, L. Li, L. Mou, O. Vechtomova, X. Dai, and J. Chen, “Generating sentences from disentangled syntactic and semantic spaces,” in ACL, 2019.

[17] B. Zhang, D. Xiong, J. Su, H. Duan, and M. Zhang, “Variational neural machine translation,” in EMNLP, 2016.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in NAACL-HLT, 2018.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

[20] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus for learning natural language inference,” in EMNLP, 2015.

[21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in ACL, 2001.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. D.-I. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in NeurIPS 2019, 2019.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2015.

[24] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[25] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in AISTATS, 2010.