Search results for: professional training level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4435

Search results for: professional training level

3865 Universal Method for Timetable Construction based on Evolutionary Approach

Authors: Maciej Norberciak

Abstract:

Timetabling problems are often hard and timeconsuming to solve. Most of the methods of solving them concern only one problem instance or class. This paper describes a universal method for solving large, highly constrained timetabling problems from different domains. The solution is based on evolutionary algorithm-s framework and operates on two levels – first-level evolutionary algorithm tries to find a solution basing on given set of operating parameters, second-level algorithm is used to establish those parameters. Tabu search is employed to speed up the solution finding process on first level. The method has been used to solve three different timetabling problems with promising results.

Keywords: Evolutionary algorithms, tabu search, timetabling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
3864 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System

Authors: O. Belalia Douma, B. Boukhatem, M. Ghrici

Abstract:

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Fuzzy Inference System (FIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, superplasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.

Keywords: Self-compacting concrete, fly ash, strength prediction, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851
3863 The Use of Real Measurements and GPS Data for Noise Mapping of Riyadh City

Authors: M. A. Foda, K. A. Alsaif, M. M. ElMadany, A.S. Aguib

Abstract:

In this paper, the noise maps for the area encircled by the Second Ring Road in Riyadh city are developed based on real measured data. Sound level meters, GPS receivers to determine measurement position, a database program to manage the measured data, and a program to develop the maps are used. A baseline noise level has been established at each short-term site so subsequent monitoring may be conducted to describe changes in Riyadh-s noise environment. Short-term sites are used to show typical daytime and nighttime noise levels at specific locations by short duration grab sampling.

Keywords: Noise mapping, Noise measurements, GPS, noise level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
3862 Lack of BIM Training: Investigating Practical Solutions for the State of Kuwait

Authors: Noor M. Abdulfattah, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Despite the evident benefits of building information modeling (BIM) to the construction industry, it faces significant implementation challenges in the State of Kuwait. This study investigates the awareness of construction stakeholders of BIM implementation challenges, and identifies various solutions to overcome these challenges. Specifically, the main objectives of this study are to: (1) characterize the barriers that deter utilization of BIM, (2) examine the awareness of engineers, architects, and construction stakeholders of these barriers, and (3) identify practical solutions to facilitate BIM utilization. A questionnaire survey was designed to collect data on the aforementioned objectives from local companies and senior BIM experts. It was found that engineers are highly aware of BIM implementation barriers. In addition, it was concluded from the questionnaire that the biggest barrier is the lack of BIM training. Based on expert feedback, the study concluded with a number of recommendations on how to overcome the barriers of BIM utilization. This should prove useful to the construction industry stakeholders and can lead to significant changes to design and construction practices.

Keywords: Building information modeling, construction, challenges, information technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
3861 Text Mining Technique for Data Mining Application

Authors: M. Govindarajan

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.

Keywords: C5.0, Error Ratio, text mining, training data, test data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
3860 Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding

Authors: R. Krishnamoorthi, N. Kannan

Abstract:

In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.

Keywords: Orthogonal Polynomials, Image Coding, Vector Quantization, TSVQ, Binary Tree Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
3859 On the Application of Meta-Design Techniques in Hardware Design Domain

Authors: R. Damaševičius

Abstract:

System-level design based on high-level abstractions is becoming increasingly important in hardware and embedded system design. This paper analyzes meta-design techniques oriented at developing meta-programs and meta-models for well-understood domains. Meta-design techniques include meta-programming and meta-modeling. At the programming level of design process, metadesign means developing generic components that are usable in a wider context of application than original domain components. At the modeling level, meta-design means developing design patterns that describe general solutions to the common recurring design problems, and meta-models that describe the relationship between different types of design models and abstractions. The paper describes and evaluates the implementation of meta-design in hardware design domain using object-oriented and meta-programming techniques. The presented ideas are illustrated with a case study.

Keywords: Design patterns, meta-design, meta-modeling, metaprogramming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
3858 Technology Trend and Level Assessment Using Patent Data for Preliminary Feasibility Study on R and D Program

Authors: Seongmin Yim

Abstract:

The Korean government has applied preliminary feasibility study for new and huge R&D programs since 2008.The study is carried out from the viewpoints of technology, policy, and Economics. Then integrate the separate analysis and finally arrive at a definite result; whether a program is feasible or unfeasible, This paper describes the concept and method of the feasibility analysis focused on technological viability assessment for technical analysis. It consists of technology trend assessment and technology level assessment. Through the analysis, we can determine the chance of schedule delay or cost overrun occurring in the proposed plan.

Keywords: Preliminary Feasibility Study, Technological viability, Technology Trend Assessment, Technology Level Assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
3857 Improving Image Segmentation Performance via Edge Preserving Regularization

Authors: Ying-jie Zhang, Li-ling Ge

Abstract:

This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.

Keywords: Energy minimization, image segmentation, level sets, edge regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
3856 Speech Recognition Using Scaly Neural Networks

Authors: Akram M. Othman, May H. Riadh

Abstract:

This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.

Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
3855 Efficient Alias-free Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding a jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.

Keywords: Alias-free, level crossing sampling, spectrum, trigonometric polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315
3854 High Level Synthesis of Digital Filters Based On Sub-Token Forwarding

Authors: Iyad F. Jafar, Sandra J. Alrawashdeh, Ban K. Alhamayel

Abstract:

High level synthesis (HLS) is a process which generates register-transfer level design for digital systems from behavioral description. There are many HLS algorithms and commercial tools. However, most of these algorithms consider a behavioral description for the system when a single token is presented to the system. This approach does not exploit extra hardware efficiently, especially in the design of digital filters where common operations may exist between successive tokens. In this paper, we modify the behavioral description to process multiple tokens in parallel. However, this approach is unlike the full processing that requires full hardware replication. It exploits the presence of common operations between successive tokens. The performance of the proposed approach is better than sequential processing and approaches that of full parallel processing as the hardware resources are increased.

Keywords: Digital filters, High level synthesis, Sub-token forwarding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
3853 M2LGP: Mining Multiple Level Gradual Patterns

Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala

Abstract:

Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.

Keywords: Gradual Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
3852 Motor Skill Adaptation Depends On the Level of Learning

Authors: Herbert Ugrinowitsch, Suziane Peixoto dos Santos-Naves, Michele Viviene Carbinatto, Rodolfo NovellinoBenda, Go Tani

Abstract:

An experiment was conducted to examine the effect of the level of performance stabilization on the human adaptability to perceptual-motor perturbation in a complex coincident timing task. Three levels of performance stabilization were established operationally: pre-stabilization, stabilization, and super-stabilization groups. Each group practiced the task until reached its level of stabilization in a constant sequence of movements and under a constant time constraint before exposure to perturbation. The results clearly showed that performance stabilization is a pre-condition for adaptation. Moreover, variability before reaching stabilization is harmful to adaptation and persistent variability after stabilization is beneficial. Moreover, the behavior of variability is specific to each measure.

Keywords: Adaptation, motor skill, perturbation, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
3851 Investigation of Monochromatization Light Effect at Molecular/Atomic Level in Electronegative-Electropositive Gas Mixtures Plasma

Authors: L.C. Ciobotaru

Abstract:

In electronegative-electropositive gas mixtures plasma, at a total pressure varying in the range of ten to hundred Torr, the appearance of a quasi-mochromatization effect of the emitted radiation was reported. This radiation could be the result of the generating mechanisms at molecular level, which is the case of the excimer radiation but also at atomic level. Thus, in the last case, in (Ne+1%Ar/Xe+H2) gas mixtures plasma in a dielectric barrier discharge, this effect, called M-effect, consists in the reduction of the discharge emission spectrum practice at one single, strong spectral line with λ = 585.3 nm. The present paper is concerned with the characteristics comparative investigation of the principal reaction mechanisms involved in the quasi-monochromatization effect existence in the case of the excimer radiation, respectively of the Meffect. Also, the paper points out the role of the metastable electronegative atoms in the appearance of the monochromatization – effect at atomic level.

Keywords: Colombian forces, Direct Harpoon reaction, Monochromatization – effect, Resonant polar three-body reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
3850 Soft-Sensor for Estimation of Gasoline Octane Number in Platforming Processes with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Authors: Hamed.Vezvaei, Sepideh.Ordibeheshti, Mehdi.Ardjmand

Abstract:

Gasoline Octane Number is the standard measure of the anti-knock properties of a motor in platforming processes, that is one of the important unit operations for oil refineries and can be determined with online measurement or use CFR (Cooperative Fuel Research) engines. Online measurements of the Octane number can be done using direct octane number analyzers, that it is too expensive, so we have to find feasible analyzer, like ANFIS estimators. ANFIS is the systems that neural network incorporated in fuzzy systems, using data automatically by learning algorithms of NNs. ANFIS constructs an input-output mapping based both on human knowledge and on generated input-output data pairs. In this research, 31 industrial data sets are used (21 data for training and the rest of the data used for generalization). Results show that, according to this simulation, hybrid method training algorithm in ANFIS has good agreements between industrial data and simulated results.

Keywords: Adaptive Neuro-Fuzzy Inference Systems, GasolineOctane Number, Soft-sensor, Catalytic Naphtha Reforming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
3849 A Novel Approach of Multilevel Inverter with Reduced Power Electronics Devices

Authors: M. Jagabar Sathik, K. Ramani

Abstract:

In this paper family of multilevel inverter topology with reduced number of power switches is presented. The proposed inverter can generate both even and odd level. The proposed topology is suitable for symmetric structure. The proposed symmetric inverter results in reduction of power switches, power diode and gate driver circuits and also it may further minimize the installation area and cost. To prove the superiority of proposed topology is compared with conventional topologies. The performance of this symmetric multilevel inverter has been tested by computer based simulation and prototype based experimental setup for nine-level inverter is developed and results are verified.

Keywords: Cascaded H- Bridge (CHB), Multilevel Inverter (MLI), Nearest Level Modulation (NLM), Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147
3848 Medical Image Segmentation Using Deformable Models and Local Fitting Binary

Authors: B. Bagheri Nakhjavanlo, T. J. Ellis, P. Raoofi, J. Dehmeshki

Abstract:

This paper presents a customized deformable model for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic aneurysm is the need to overcome problems associated with intensity inhomogeneities and image noise. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A Gaussian kernel function in the level set formulation, which extracts the local intensity information, aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets. The results indicate the method is more effective than other approaches in coping with intensity inhomogeneities.

Keywords: Abdominal and thoracic aortic aneurysms, intensityinhomogeneity, level sets, local fitting binary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
3847 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
3846 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model

Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo

Abstract:

Considering the energy crisis that is hitting Europe, it becomes increasingly necessary to change energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy, not only to satisfy energy needs and fulfill the required consumption, but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energy communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next 10 years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.

Keywords: ARIMA, electricity consumption, forecasting models, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282
3845 Estimation of Train Operation Using an Exponential Smoothing Method

Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono

Abstract:

The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.

Keywords: Exponential smoothing method, open data, operation estimation, train schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
3844 Examining the Usefulness of an ESP Textbook for Information Technology: Learner Perspectives

Authors: Yun-Husan Huang

Abstract:

Many English for Specific Purposes (ESP) textbooks are distributed globally as the content development is often obliged to compromises between commercial and pedagogical demands. Therefore, the issue of regional application and usefulness of globally published ESP textbooks has received much debate. For ESP instructors, textbook selection is definitely a priority consideration for curriculum design. An appropriate ESP textbook can facilitate teaching and learning, while an inappropriate one may cause a disaster for both teachers and students. This study aims to investigate the regional application and usefulness of an ESP textbook for information technology (IT). Participants were 51 sophomores majoring in Applied Informatics and Multimedia at a university in Taiwan. As they were non-English majors, their English proficiency was mostly at elementary and elementary-to-intermediate levels. This course was offered for two semesters. The textbook selected was Oxford English for Information Technology. At class end, the students were required to complete a survey comprising five choices of Very Easy, Easy, Neutral, Difficult, and Very Difficult for each item. Based on the content design of the textbook, the survey investigated how the students viewed the difficulty of grammar, listening, speaking, reading, and writing materials of the textbook. In terms of difficulty, results reveal that only 22% of them found the grammar section difficult and very difficult. For listening, 71% responded difficult and very difficult. For general reading, 55% responded difficult and very difficult. For speaking, 56% responded difficult and very difficult. For writing, 78% responded difficult and very difficult. For advanced reading, 90% reported difficult and very difficult. These results indicate that, except the grammar section, more than half of the students found the textbook contents difficult in terms of listening, speaking, reading, and writing materials. Such contradictory results between the easy grammar section and the difficult four language skills sections imply that the textbook designers do not well understand the English learning background of regional ESP learners. For the participants, the learning contents of the grammar section were the general grammar level of junior high school, while the learning contents of the four language skills sections were more of the levels of college English majors. Implications from the findings are obtained for instructors and textbook designers. First of all, existing ESP textbooks for IT are few and thus textbook selections for instructors are insufficient. Second, existing globally published textbooks for IT cannot be applied to learners of all English proficiency levels, especially the low level. With limited textbook selections, third, instructors should modify the selected textbook contents or supplement extra ESP materials to meet the proficiency level of target learners. Fourth, local ESP publishers should collaborate with local ESP instructors who understand best the learning background of their students in order to develop appropriate ESP textbooks for local learners. Even though the instructor reduced learning contents and simplified tests in curriculum design, in conclusion, the students still found difficult. This implies that in addition to the instructor’s professional experience, there is a need to understand the usefulness of the textbook from learner perspectives.

Keywords: ESP textbooks, ESP materials, ESP textbook design, learner perspectives on ESP textbooks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
3843 A Third Drop Level For TCP-RED Congestion Control Strategy

Authors: Nabhan Hamadneh, Michael Dixon, Peter Cole, David Murray

Abstract:

This work presents the Risk Threshold RED (RTRED) congestion control strategy for TCP networks. In addition to the maximum and minimum thresholds in existing RED-based strategies, we add a third dropping level. This new dropping level is the risk threshold which works with the actual and average queue sizes to detect the immediate congestion in gateways. Congestion reaction by RTRED is on time. The reaction to congestion is neither too early, to avoid unfair packet losses, nor too late to avoid packet dropping from time-outs. We compared our novel strategy with RED and ARED strategies for TCP congestion handling using a NS-2 simulation script. We found that the RTRED strategy outperformed RED and ARED.

Keywords: AQM, congestion control, RED, TCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
3842 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map

Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr

Abstract:

This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.

Keywords: Face detection, skin color segmentation, self-organizingmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
3841 New Chances of Reforming Pedagogical Approach in Secondary English Class in China under the New English Curriculum and National College Entrance Examination Reform

Authors: Yue Wang

Abstract:

Five years after the newest English curriculum, reform policy was enacted in China and hand-wringing spread among teachers who accused that this is another “wearing new shoes to walk the old road” policy. This paper provides a thoroughly philosophical policy analysis of serious efforts that had been made to support this reform and revealed the hindrances that bridled the reform to yield the desired effect. Blame could be easily put on teachers for their insufficient pedagogical content knowledge, conservative resistance, and the handicaps of large class sizes and limited teaching times and so on. However, the underlying causes for this implementation failure are the interrelated factors in the NCEE-centred education system, such as the reluctance from students, the lack of school and education bureau support and insufficient teacher training. A further discussion of the 2017 to 2020’s NCEE reform on English prompts new possibilities for the authentic pedagogical approach reform in secondary English classes. In all, the pedagogical approach reform at the secondary level is heading towards a brighter future with the initiation of new NCEE reform.

Keywords: English curriculum, failure, NCEE, new possibilities, pedagogical, policy analysis, reform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528
3840 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
3839 Modeling and Simulation of In-vessel Core Handling in PFBR Operator Training Simulator

Authors: Bindu Sankar, Jaideep Chakraborty, Rashmi Nawlakha, A. Venkatesan, S. Raghupathy, T. Jayanthi, S.A.V. Satya Murty

Abstract:

Component handling system is one of the important sub systems of Prototype Fast Breeder Reactor (PFBR) used for fuel handling. Core handling system is again a sub system of component handling system. Core handling system consists of in-vessel and ex-vessel subassembly handling. In-vessel core handling involves transfer arm, large rotatable plug and small rotatable plug operations. Modeling and simulation of in-vessel core handling is a part of development of Prototype Fast Breeder Reactor Operator Training Simulator. This paper deals with simulation and modeling of operations of transfer arm, large rotatable plug and small rotatable plug needed for in-vessel core handling. Process modeling was developed in house using platform independent Cµ code with OpenGL (Open Graphics Library). The control logic models and virtual panel were modeled using simulation tool.

Keywords: Animation, Core Handling System, Prototype Fast Breeder Reactor, Simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
3838 Seismic Performance of Reinforced Concrete Frame Structure Based on Plastic Rotation

Authors: Kahil Amar, Meziani Faroudja, Khelil Nacim

Abstract:

The principal objective of this study is the evaluation of the seismic performance of reinforced concrete frame structures, taking into account of the behavior laws, reflecting the real behavior of materials, using CASTEM2000 software. A finite element model used is based in modified Takeda model with Timoshenko elements for columns and beams. This model is validated on a Vecchio experimental reinforced concrete (RC) frame model. Then, a study focused on the behavior of a RC frame with three-level and three-story in order to visualize the positioning the plastic hinge (plastic rotation), determined from the curvature distribution along the elements. The results obtained show that the beams of the 1st and 2nd level developed a very large plastic rotations, or these rotations exceed the values corresponding to CP (Collapse prevention with cp qCP = 0.02 rad), against those developed at the 3rd level, are between IO and LS (Immediate occupancy and life Safety with qIO = 0.005 rad and rad qLS = 0.01 respectively), so the beams of first and second levels submit a very significant damage.

Keywords: Seismic performance, performance level, pushover analysis, plastic rotation, plastic hinge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
3837 A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision

Authors: Ahmad Sharieh, R Bremananth

Abstract:

Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized Leverberg- Marquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system.

Keywords: Artificial neural network, back propagation gaming, Leverberg-Marquardt, minimax procedure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
3836 Effect of Trataka on Anxiety among Adolescents

Authors: Pushp Lata Rajpoot, Pushpa Vaishnav

Abstract:

Anxiety is a common psychological problem and also implicated as a contributor to many chronic diseases which decreased quality of life even with pharmacological treatment. At the present time several yogic practices- meditation, pranayama, and mantra, etcetera are playing important role in treating physiological and psychological problems. Hence, the present investigation is aimed to see the effect of Trataka on the level of anxiety among adolescents. For the present study, a sample of 30 adolescents belonging to the age range 20-30 years was selected from Devsanskriti Vishwa Vidyalaya Haridwar through random sampling. In this investigation, Sinha’s Comprehensive anxiety test has been used to measure the level of anxiety. Statistical analysis has been done by using t-test. Findings of this study reveal that Trataka significantly decreases the level of anxiety among adolescents.

Keywords: Adolescents, Anxiety, Trataka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5719