
 

 

  
Abstract—In this paper, a new algorithm for generating 

codebook is proposed for vector quantization (VQ) in image coding. 
The significant features of the training image vectors are extracted by 
using the proposed Orthogonal Polynomials based transformation. 
We propose to generate the codebook by partitioning these feature 
vectors into a binary tree. Each feature vector at a non-terminal node 
of the binary tree is directed to one of the two descendants by 
comparing a single feature associated with that node to a threshold. 
The binary tree codebook is used for encoding and decoding the 
feature vectors. In the decoding process the feature vectors are 
subjected to inverse transformation with the help of basis functions 
of the proposed Orthogonal Polynomials based transformation to get 
back the approximated input image training vectors. The results of 
the proposed coding are compared with the VQ using Discrete 
Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) 
algorithm. The new algorithm results in a considerable reduction in 
computation time and provides better reconstructed picture quality. 
 

Keywords—Orthogonal Polynomials, Image Coding, Vector 
Quantization, TSVQ, Binary Tree Classifier  

I. INTRODUCTION 
MAGE compression addresses the problem of reducing the 
amount of data required to represent the digital image. One 

approach to image data compression is the use of unitary 
transformation that operates on the image to produce the set of 
transform coefficients.  The simple and powerful class of 
transform coding is linear block transform coding, where the 
entire image is partitioned into a number of non-overlapping 
blocks and then the transformation is applied to yield 
transform coefficients.  This is necessitated because of the fact 
that the original pixel values of the input image are highly 
correlated [1].  The international compression standard JPEG 
baseline system [2] uses the Discrete Cosine Transformation 
[3, 4]. In the early works, utilization of other transforms such 
as Haar [5], Slant [6], KL Transformation [7, 8], Hadamard 
[9] and Walsh [10] are also reported. 
In the current scenario, the Vector Quantization has been 
found to be an efficient data compression technique for speech 
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and image. In this, the image data is divided into non-
overlapping blocks of same size (training vectors). The key to 
Vector Quantization is to construct a good codebook of 
representative vectors. The most popular method for designing 
a codebook was proposed by Linde, Buzo and Gray in [11, 
12]. This method is now commonly referred to as LBG 
algorithm. In this algorithm, all the training vectors are 
clustered using minimum distortion principle around trial code 
vectors. The centroids of these clusters then become the new 
trial code vectors at the next iteration. This procedure 
continues until there is no significant change in the total 
distortion between cluster members and the code vectors 
around which they are clustered. Then the training vectors are 
compared with codebook that is generated by the LBG 
algorithm, to get the index position of the codeword with 
minimum distortion. This index value is transmitted to the 
receiver. The decoder at the receiver end has the same 
codebook as the encoder, and the decoding is performed by 
table look-up procedure using the received index value. 

In order to find the best-matched codeword in the encoder, 
the ordinary VQ coding scheme employs the full search 
algorithm, which examines the Euclidean distance between 
the input vector and all codewords in the codebook. Hence the 
encoding time complexity in the full search algorithm is given 
as KN operations where K is the input vector dimension, N is 
the codebook size per vector, and this complexity grows as the 
input vector dimension increases. To overcome this problem, 
a fast search algorithm is reported for VQ based image 
compression [13], which uses time reduction for searching the 
matched vector. In [14], a DCT based codebook generation 
method is reported that reduces the codebook size and search 
time. In this method, the features of training vectors are 
extracted by using DCT. By using the energy preserving 
property of the DCT the dimension of the feature vector is 
reduced. The reduced dimension feature vectors are used to 
design the binary tree codebook. In [15], a method is 
suggested to reduce the size of the codebook. In [16], Chou et 
al. have proposed an approach for designing an unbalanced 
Tree Structured Vector Quantization (TSVQ). The pruning 
algorithm used in this approach repeatedly removes the branch 
of the TSVQ and yields the smallest slope of increase in 
distortion to decrease in rate. The result is an unbalanced 
subtree that has the minimum average distortion with a 
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prescribed average rate.  Moayeri et al. [17] propose a fine-
coarse VQ that operates in two stages: a fine structured VQ 
followed by a coarse unstructured VQ using table look-up. In 
[18], a technique is proposed for encoding time reduction in 
vector quantization. Another efficient algorithm called 
Pairwise Nearest Neighbor (PNN) has been proposed by 
Equitz [19]. This algorithm requires no initial codebook. The 
basic idea of PNN is to successively merge the two closest 
clusters into another cluster represented by the centroids of the 
two clusters. It starts with the entire training set and iterates 
until the set of vectors is reduced to the desired size. The 
median value of the vectors is used for partitioning the 
training set. The computational efficiency of the PNN 
algorithm is achieved by a preprocessing operation that 
partitions the training vectors into a k-dimensional tree.  

A binary tree is the simplest and most widely used structure 
of decision trees. It consists of a root node and set of terminal 
and nonterminal nodes. Each nonterminal node consists of 
two descendant nodes, but terminal node does not. In [20, 21] 
Binary tree classifier technique is reported. This technique 
deals with how a pattern vector is classified by passing it 
through the tree from the root to a leaf. In this method, there 
are  three major tasks implemented for designing the binary 
tree classifier: (i) to setup the structure of an optimal binary 
tree, (ii) to choose the most effective feature subset at each 
nonterminal node, and (iii) to choose the decision principle 
used at each nonterminal node. The overall design criteria of 
the binary tree classifier are reported in [22]. These criteria 
include minimum probability of error, minimum number of 
nodes, minimum path length, minimum expected search time 
etc. In early years different tree search techniques are reported 
in the literature [23, 24, 25]. These search techniques require a 
large amount of computation time, memory with no guarantee 
for optimality. To overcome this, some other related works 
[26, 27] focus on the choice of features and/or decision 
principle under the constraint of a balanced tree structure. It 
has the advantage of relatively lower computational 
complexity and memory requirement. These tree structures 
can be effectively utilized to generate a binary tree codebook 
for the VQ. 
 Motivated by the fact that VQ in Transformed domain 
results in lesser computational complexity and reduced 
memory requirement, when combined with binary tree 
codebook we propose in this paper a binary tree codebook 
generation algorithm using the orthogonal polynomials based 
transform coding. The generating formula for the proposed 
transform coding is well established in image compression 
and other image processing techniques [28, 29,30].  The 
proposed transform coding has been configured as an integer 
transformation so as to reduce time and space complexities. 
The results show that the proposed binary tree codebook in 
VQ significantly reduces the computation time and obtains the 
better reconstructed picture quality compared to the PNN 
algorithm and DCT based VQ. 

The proposed scheme is modeled as a variation of TSVQ 
(Tree Structured Vector Quantization). The primary difference 

between this scheme and the earlier works on TSVQ is the 
choice of split criterion. The earlier works makes use of the 
LBG at each node to split the training vectors into two 
partitions, whereas in our proposed scheme orthogonal 
polynomials based transform coefficients are used. Moreover 
the main computation required for growing a tree is just a 
scalar operation and no iteration is required. 

This paper is organized as follows. In Sections II and III the 
proposed orthogonal polynomials based transform coding is 
presented. A brief introduction to Vector Quantization is 
presented in Section IV. In Section V, the proposed Codebook 
generation technique is described. The performance analysis 
measure used to evaluate the proposed technique is described 
in Section VI. Finally, the experiments and results are 
discussed in Section VII. 

II. ORTHOGONAL POLYNOMIALS BASED TRANSFORM CODING 
 
A linear 2-D image formation system usually considered 

around a Cartesian coordinate separable, blurring, point 
spread operator in which the image I results in the 
superposition of the point source of impulse weighted by the 
value of the object f. Expressing the object function f in terms 
of derivatives of the image function I relative to its Cartesian 
coordinates is very useful for analyzing and compressing the 
image. The point spread function M(x, y) can be considered to 
be real valued function defined for (x, y) ∈ X x Y, where X 
and Y are ordered subsets of real values. In case of gray-level 
image of size (n x n) where X (rows) consists of a finite set, 
which for convenience can be labeled as {0, 1, …, n-1}, the 
function M(x, y) reduces to a sequence of functions. 
M ( i, t) =  ui(t), i = 0, 1, …, n-1                (1) 

The linear two dimensional transformation can be defined 
by the point spread operator M(x, y) (M(i, t) =  ui(t)) as shown 
in equation 2. 

( ) ( ) ( ) ( )β ζ η ζ η' , , , ,=
∈∈ ∫∫ M x M y I x y dxdy

y Yx X
 (2) 

Considering both X and Y to be a finite set of values {0, 1, 
and 2 … n 1}, equation (2) can be written in matrix notation 
as follows 

( ) IMM t
ij ⊗='β                                             (3) 

where ⊗  is the outer product, |β′ij| are n2 matrices arranged in 
the dictionary sequence, |I| is the image , |β′ij| are the 
coefficients of transformation and  the point spread operator 
|M| is  

        

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

M

u t u t u t

u t u t u t

u t u t u t

n

n

n n n n

=

−

−

−

0 1 1 1 1 1

0 2 1 2 1 2

0 1 1

L

L

M

L

       (4) 

We consider the set of orthogonal polynomials u0(t), u1(t), 
…, un-1(t) of degrees 0, 1, 2, …, n-1, respectively to construct 
the polynomial operators of different sizes from equation (4) 

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:3, No:11, 2009 

2003International Scholarly and Scientific Research & Innovation 3(11) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
11

, 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
50

3.
pd

f



 

 

for n ≥ 2 and ti = i. The generating formula for the 
polynomials is as follows. 

,1)()()()()( 11 ≥−−= −+ ifortunbtuttu iiii μ           (5) 

                   
1)()( 0 =−= tuandttui μ  

where 
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Considering the range of values of t to be   ti = i, i = 1, 2, 3, 
…n, we get   

       ( ) ( )
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222
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11,
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We can construct point-spread operators |M| of different size 
from equation (4) using the above orthogonal polynomials for 
n ≥ 2 and ti =  i. For the convenience of point-spread 
operations, the elements of |M| are scaled to make them 
integers.    

III. THE ORTHOGONAL POLYNOMIAL BASIS 
For the sake of computational simplicity, the finite 

Cartesian coordinate set X, Y is labeled as {1, 2, and 3}. The 
point spread operator in equation (3) that defines the linear 
orthogonal transformation for image coding can be obtained 

as |M| ⊗ |M|, where |M| can be computed and scaled from 
equation (4) as follows. 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )222120

121110

020100

xuxuxu
xuxuxu
xuxuxu

M = =

111
201
111

−
−

  (6)  

The set of polynomial basis operators )1,0( −≤≤ njion
ji can 

be computed as
t
ii

n
ji uuo ˆˆ ⊗=

, where ûi is the (i + 1) st 
  column 

vector of  |M|. 
 The complete set of basis operators of sizes (2 X 2) and    

(3 X 3) are given below:  
Polynomial basis operators of size (2 * 2) are 

[ ] ⎥
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Polynomial basis operators of (3 * 3) are 
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It can be shown that a set of (n x n) (n ≥ 2) polynomial 
operators forms a basis, i.e. it is complete and linearly 
independent. In the next section, we present first a brief 
introduction on Vector Quantization and then the proposed 
Codebook generation algorithm. 

IV. VECTOR QUANTIZATION (VQ) 
 A vector quantizer is a system for mapping a sequence of 
continuous or discrete vectors into a digital sequence suitable 
for storage. The main reason for doing this is to reduce the 
rate for transmission of an image. 
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A. VQ Definition  
 
A vector quantizer Q of dimension k and size N is a 

mapping from a point in k-dimensional Euclidean space, Rk 
into a finite set C containing N output or reproduction points 
that exist in the same Euclidean space as the original point. 
These reproduction points are known as code words and these 
set of code words are called a codebook C with N distinct 
code words in the set. Thus, the mapping function Q is 
defined as, 
                Q : Rk → C,                                                           (7) 

The rate of the vector quantizer or the number of bits used 
to express each quantized vector is, 
       r =log2 N / k                                                                    (8) 
This rate equation is very useful as it gives the amount of 
compression that can be expected for a particular VQ coding 
scheme. Vector quantization in its entirety is quite a simple 
concept, but the major complexity comes about in selecting a 
codebook C of size N that best represents original vectors or 
training set X in Rk Euclidean space. To solve this 
optimization problem, we require a distortion measure 

)ˆ,( XXd that represents the penalty of the mapping Q 
process. The measure is given by 

21

0

)ˆ()ˆ,( ∑
−

=

−=
k

j
jj xxXXd , where jj xanax ˆ  are jth 

elements of X (training vector) and X̂ (codebook vector) 
vectors, respectively. 

B. Vector Quantizer Design 
 
The goal to design an optimal vector quantizer is to obtain a 

quantizer consisting of N reproduction vectors, such that it 
minimizes the expected distortion.  The codebook is designed 
from the set of training vectors and a popular design method 
used is LBG algorithm. It is an iterative algorithm that 
requires an initial codebook, which is obtained by splitting 
method. In this method an initial code vector is set as the 
average of the entire training sequence, which is defined by 
the source image. This code vector is then split into two. 
These two code vectors are split into four and is repeated until 
the desired number of code vectors is obtained. 

In the encoding process, the input vector simply searches 
for the best matching codebook vector in the obtained 
codebook and the index of that vector in a codebook is 
transmitted.  The decoder performs as the table look-up.  It 
receives the transmitted index and look at the codebook for 
the vector that corresponds to and then matched vector from 
the codebook is used to represent the input vector. 

V.  PROPOSED CODEBOOK GENERATION  
In this section, a vector quantization scheme that facilitates 

image compression is presented with orthogonal polynomials 
based transformation. We consider this as a classification 

problem since in this scheme the codebook is generated by 
partitioning the feature patterns into clusters. The proposed 
technique uses two steps namely extraction of features using 
orthogonal polynomials based transform coding and design of 
binary tree classifier. The advantage of combining both the 
transformation and VQ using the proposed binary tree 
classifier codebook is that, when a linear transform is applied 
to the vector signal, the information is compacted into a subset 
of the vector components. In the frequency domain, the high 
energy components are concentrated in the low frequency 
region. This means that the transformed vector components in 
the high frequency regions have very little information. These 
low energy components might be discarded entirely. Let us 
consider a k-dimensional transformed input vector, Y. We 
map it into a d-dimensional vector (d < k), Z by discarding the 
low frequency components. Then the p-dimensional VQ is 
used to vector quantize the truncated vector, forming the 

quantized approximation Ẑ . Recovery can be obtained by 
padding operation that appends   (k–d) additional components 
with value zero to the vector, producing the k-dimensional 

vector Ŷ . Finally the inverse transform is applied to Ŷ  to 
obtain the approximate input image vector.  

The features are extracted from frequency domain 
coefficients that are obtained from the orthogonal polynomials 
based transform coding of the original image data, and with 
reduced dimension of data considerably thereby reducing the 
computational time. Then, a binary tree classifier is proposed 
to generate codewords from the extracted features. The binary 
tree classifier focuses on the tasks of choosing the effective 
feature as split key and a good decision principle at each node 
to obtain better balanced tree structure.  

In this proposed scheme, the binary tree classifier uses the 
feature with the largest variance as the split key. The rationale 
behind this choice is that if the data are very spread out along 
a particular feature, then presumably differences in that 
feature are more significant than differences in another more 
densely grouped feature.  Now that the split key has been 
chosen, the decision principle has to be decided upon, which 
is a simple threshold operation. Here the mean value of the 
corresponding split key feature is used as the threshold 
because the mean not only contains most of the statistical 
information of the feature but also requires less computation. 
A threshold T is used to partition the training feature vectors 
at a nonterminal node into two halves. The partition is based 
on whether the key value of the vector is greater or lesser than 
T. The splitting procedure is repeated until the desired number 
of clusters i.e. the desired codebook size is reached. The 
number of clusters is equal to the number of leaves at the 
lowest level of the binary tree. Finally, the codewords of the 
codebook are formed by computing the centroids of the 
feature vectors falling at each node.  

The following example illustrates the proposed codebook 
design using the binary tree classifier. Assuming that we are 
interested to generate a codebook with a size of 4 from the 
training set  {x1, x2...… x9}. All the training vectors are 
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partitioned by the key k1 into two groups:                      
G1 = {x1, x2, x6, x9} and G2 = {x3, x4, x5, x7, x8}. G1 is 
further partitioned by K2 into G3 = {x1, x6} and G4 = {x2, 
x9}; G2 is partitioned by k3 into G5 = {x3, x7} and G6 = {x4, 
x5, x8}. The mean of the training vectors falling at each 
terminal node is calculated and regarded as code vector of the 
codebook. 

The proposed codebook generation algorithm using the 
binary tree classifier and Orthogonal Polynomials based 
transform coding is described hereunder. 

A. Codebook generation algorithm 
 

Input:  Image of size N x N 
Output:  Binary tree codebook  

 
Step 1: 
  Partition the training image into non-overlapping blocks 

of size M * M (typically M = 4). A block of pixels is called a 
training pattern vector and denoted as x, x = {x (j), j = 1, 2… 
k; k = M * M}.  

 
Step 2: 
 Extract the features of each block from the orthogonal 

polynomials based transform coding as described in section 2.  
 
Step 3: 
Rearrange the feature coefficient matrix into 1-D array in 

zig-zag sequence in the order of decreasing variance to form 
k-dimensional feature vector.  

 
Step 4: 
Discard the high frequency coefficients based on energy 

preserving property of the proposed transform coding to form 
the feature vector z, where z = {z(j), j = 1,2,…,d; d < k}. 

 
Step 5: 
 Compute the mean and variance of each feature. For any 

nonterminal node n, the mean Mn (j) and variance Vn (j) for 
the jth feature are defined as  

( ) ( )∑
=

−=
nN

i

n
inn jZNjM

1

1

                                           (9) 
 

( ) ( ) ( )[ ]
2

∑ −= jMjZjV n
n
in

                                  (10) 
for j = 1, 2…, k where Nn  is the number of training vectors at 
the node n and )( jZ n

i  is the jth feature corresponding to 
training vectors at node n.  

 
Step 6:  
Select the feature with the largest variance as the split 

feature and choose the corresponding mean value as the 
threshold. If Vn (p) = max {Vn (j), j = 1,2,…,d}, then the pth 

feature of the feature space will be chosen as a split feature at 
this node, and Mn (p) is adopted as a split threshold.  

Step 7: 
Compare the value of the pth feature of the training vector 

with Mn (p). If it is less place the pth feature on the left sub 
tree; otherwise on the right sub tree.  

 
 Step 8: 
Repeat steps 2 through 7 until the required number of 

clusters are formed.  
 
Step 9: 
 Compute the centroid of the feature vectors falling on 

each of the terminal node of the binary tree classifier and use 
it as code vector of the final codebook.  

This proposed codebook design is used to vector quantize 
the transform coefficients. After vector quantizing, the 
quantizer outputs are inverse transformed using the basis 
functions as described in Section 3 to produce the quantized 
approximation of the original input image.  

VI. PERFORMANCE ANALYSIS 
 
The performance of the proposed vector quantizer design 

on orthogonal polynomials based transform coding is reported 
by computing the peak signal-to-noise ratio (PSNR), which is 
defined as          

          

2

210
255log10

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

mse
PSNR                                     (11) 

 where the average mean-square error ems, is 
                                                      

( )∑∑
= =

−=
N

i

M

i
jijirms uuE

NM
e

1 1

2
,,

2 '1
 

where {ui,j } and {u’i,j } represent the N x M original and 
reproduced images respectively. 

VII. EXPERIMENTS & RESULTS 
The proposed codebook design for Vector Quantization 

scheme has been implemented on various test images. One 
such test image viz. Lena image of size 128 x 128 with pixel 
values in the range 0 – 255 is given in figure 1. The input 
image is partitioned into various non-overlapping sub-images 
of equal size of (4 x 4) and the codebook size is 128. This 
block is subjected to orthogonal polynomials based transform 
coding and features are obtained as explained in section 2. 
The binary tree classifier is constructed using the energy 
preserving features as described in section 5 and VQ is 
implemented. The image is reconstructed using the orthogonal 
polynomial basis functions as described in section 3. The 
performance of the proposed vector quantization scheme is 
measured with Peak-Signal-to-Noise-Ratio (PSNR) as given 
in equation (11). We could achieve a Mean Square Error value 
of 32.19 with a PSNR value 33.05dB for the input image 
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Lena. The reconstructed image by the proposed scheme 
corresponding to the given original image is shown in figure 
2(a). This proposed method is also compared with PNN 
method and DCT based binary tree codebook method. The 
reconstructed images by these two methods corresponding to 
the original images are shown in figure 2(b) and 2(c) 
respectively. The Mean Square Error with PSNR values by the 
proposed method, PNN method and DCT based binary tree 
codebook method are presented in Table 1. From the 
experimental results, it is observed that the proposed coding 
gives higher PSNR value with good reconstructed image 
quality. 
 

     TABLE I 
PERFORMANCE COMPARISON 

CODING 
SCHEME MSE PSNR(DB) BITS/PIXEL 

PNN 
 35.14 32.67 0.25 

VQ USING 
DCT 33.49 32.88 0.25 

PROPOSED 
SCHEME 32.19 33.05 0.25 

  

      
 

     Fig. 1 Original image 
 

                  
 
            (a) Proposed Scheme                                      (b) PNN scheme  

                                         

 
                           

          (c) VQ using DCT 
 

Fig. 2 Reconstructed images 

VIII. CONCLUSION 
In this paper a new codebook design algorithm is proposed 

for the vector quantization of images. This scheme uses 
orthogonal polynomials based transformation to extract the 
features of the training images. Using the energy preserving 
property of the proposed transformation, certain significant 
components of the feature space are selected to partition the 
training vectors into a binary tree. A single feature with the 
largest variance and its corresponding mean value are adopted 
as split feature and split threshold respectively for generating 
the binary tree codebook. As a result, the binary tree 
codebook is used to vector quantize the image under analysis. 
The performance of the proposed scheme is measured with 
standard PSNR value and is compared with PNN method and 
VQ using DCT.  
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