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Abstract—This paper proposes strategies in level crossing (LC)
sampling and reconstruction that provide alias-free high-fidelity
signal reconstruction for speech signals without exponentially
increasing sample number with increasing bit-depth. We introduce
methods in LC sampling that reduce the sampling rate close to
the Nyquist frequency even for large bit-depth. The results indicate
that larger variation in the sampling intervals leads to alias-free
sampling scheme; this is achieved by either reducing the bit-depth or
adding a jitter to the system for high bit-depths. In conjunction with
windowing, the signal is reconstructed from the LC samples using
an efficient Toeplitz reconstruction algorithm.

Keywords—Alias-free, level crossing sampling, spectrum,
trigonometric polynomial

I. INTRODUCTION

MANY signals of physiological origin such as speech,

ECG and EEG vary rapidly for brief moments and then

remain constant for some time. Synchronous signal processing

architectures do not take into account the temporal sparsity

of these signals and, hence, classical uniform sampling in

time can result in a large number of samples that convey

little or no information. Level crossing (LC) analogue to

digital converters (ADCs) [1], [2] have been shown to have

significant benefits over conventional ADCs, not least they

offer the potential of a significant reduction in operating power

when signals are temporally sparse. In conventional LC (CLC)

sampling, also known as sent-on-delta or implicit sampling [3],

reference amplitude thresholds are regularly distributed along

the amplitude range of the signal. A sample is triggered when

the input signal f(t) crosses one of these thresholds. If the

times t1, t2, · · · are considered instants at which the amplitude

levels are crossed, the sample pairs {tj , fj} represent the

signal, f(tj) = fj . Sampling time tj depends only on the form

of f(t) and the threshold locations. The relationship between

the bit-depth, B, and the number of thresholds, N , is N = 2B .

In conventional ADC the input analogue signal is sampled

uniformly in time [4]. This generates spectral replicas of signal

energy at multiples of the sampling frequency. High-frequency

noise would fold back to baseband if the input signal is not

bandlimited to less than half of the sampling frequency. This is

referred to aliasing which degrades the signal quality. Hence,

there is considerable interest in LC ADCs due to the significant

benefit of removing aliasing [5], [6].

To date, few studies have investigated the use of LC ADCs

in the context of alias-free signal processing [7]–[9]. Tsividis

[10] stated that since there is no sampling in time, no aliasing

occurs. Wu [11] also stated that alias-free property of LC

sampling is because the sampling rate adapts to the signal

frequency. Whilst these studies claim that the spectrum is
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cleaner and has fewer distortion components at frequencies

in the band of interest, no systematic quantitative analysis

has been undertaken. Here we undertake such an analysis by

investigating the impact of aliasing in a simulated LC ADC

without an anti-aliasing filter.

Additionally, we propose strategies in LC sampling and 
reconstruction that not only provide high fidelity signal 
reconstruction for speech signals but also exploit the alias-free 
property to give highly efficient sampling protocols. The 
results indicate that the distribution of the intervals between 
samples highly affects signal reconstruction quality and 
also aliasing. The proposed sampling method improves the 
efficiency of the sampling by excluding samples that occur 
within a specified interval of the previous sample. The 
alias-free property enables a significant reduction in the 
number of samples whilst maintaining functionally useful 
signal quality.

There are different approaches of reconstruction from

non-uniform sampling [12]. Many of these methods are

numerically unstable due to ill-conditioning [13]. Here we

reconstruct the signal based on trigonometric polynomials and

an adaptive weights least square approach [14].

The objective of the paper is to develop LC sampling

methods that yield alias-free property. By introducing a

novel sampling method and using a trigonometric polynomial

reconstruction method we show it is possible to reduce the

sampling rate compared to CLC ADCs without significantly

compromising the coding fidelity.

This paper is organised as follows. The reconstruction 
methodology is presented in Section II. Section III outlines 
the proposed sampling and reconstruction methodologies. The 
simulation and results for sinusoidal and speech signals are 
discussed in Sections IV and V. Lastly, Section VI 
concludes the paper.

II. RECONSTRUCTION FROM IRREGULAR SAMPLES

We consider the problem of reconstructing a band-limited

function f(t) from its set of irregular samples {f(tj), j ∈
Z}. We used adaptive-weight conjugate-gradient Toeplitz

reconstruction method (ACT algorithm) [13]. We apply ACT

algorithm to the oversampling problem; we oversample the

signal by increasing the bit-depth to improve accuracy while

negating the negative impact of exponentially increasing

number of sample points.

An efficient and accurate approximation of f(t) from data

set {f(tj), |tj | ≤ M}, M > 0 can be achieved by interpolating

the data f(tj) using trigonometric polynomials [13], [14],

PM = {p : p(t) =
∑M

k=−M aM (k) e
2πikt
2M+1√
2M+1

, aM (k) ∈ C (1)
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A unique trigonometric polynomial pM ∈ PM of order M and

period 2M +1 fits the samples f(tj) in an interval [−M,M ].
In order to avoid the boundary effects, the samples are taken

in JM ⊆ [−M − 1,M + 1].
Suppose {tj , f(tj)}, j ∈ Z and −M − 1

2 ≤ t1 < · · · tj <
M + 1

2 , is given and the sampling set satisfies the maximal

gap condition (MGC) [13],

sup(tj+1 − tj) = δ <
1

2fmax
=

T0

2M
, j ∈ Z (2)

where δ is the largest interval in the whole sequence, T0 is

the record length, fmax is the maximum frequency in the

trigonometric polynomial. Ideally, pM (tj) = f(tj). However,

for finite M this is not equal, and the error should be

minimized. The unique trigonometric polynomial, pM ∈ PM ,

solves least squares problem (LSP).

∑
j∈JM

|pM (tj)− f(tj)|2 tj+1 − tj−1

2
= minimum (3)

and limM→∞ pM (t) = f(t). LSP is an accurate reconstruction

method for irregular sampling problem which can be solved

by the inversion of a Toeplitz matrix [14]. CM is considered

the (2M + 1)× (2M + 1) positive Toeplitz matrix.

(CM )kl =
∑
j∈JM

wj

2M + 1
e

−2πi(k−l)tj
2M+1 , |k|, |l| ≤ M (4)

where wj =
tj+1−tj−1

2 > 0, j ∈ Z, is a set of weights and

only changes the amplitude of the components. They help to

keep the condition number of a Toeplitz matrix low [13].

For a given sequence of LC samples {(tj , f(tj)), j ∈ JM}
as an input, if condition JM ≥ 2M + 1 is satisfied, bM ∈
C

2M+1 is computed as follows [14],

bM (k) =
∑
j∈JM

f(tj)
wj√

2M + 1
e

−2πiktj
2M+1 , |k| ≤ M (5)

We can construct the trigonometric polynomial using (1). aM
is the matrix of Fourier coefficient and can be calculated by

the inversion of CM .

aM = C−1
M bM ∈ C

2M+1 (6)

ACT algorithm is a strong candidate for high-fidelity

systems because adaptive weights improve ill-conditioning and

hence numerical stability and exact reconstruction has been

proven for band-limited signals [14].

III. SAMPLING AND RECONSTRUCTION METHODOLOGIES

The accuracy of a LC ADC is governed by a number of

factors that in practice are hardware dependent; generally,

these relate to the accuracy of the samples and the method

of reconstruction [15]. For this study, we assume that the

thresholds and hence the samples tj are known with infinite

precision and the time quantization is arbitrarily accurate. With

these assumptions, the reconstruction method becomes the

limiting factor in determining the SNR of the ADC [16] and

hence the fundamental limit of this method can be evaluated.

A notable advantage of employing an adaptive-weights

Toeplitz formalism is that the numerical conditioning is

theoretical well established [13]. The condition number of the

Toeplitz matrix has been obtained,

cond CM ≤
(
1 + 2δM

1− 2δM

)2

(7)

It is notable that the conditioning of the problem is governed

entirely by the maximal gap δ and the order of the polynomial

M . Reducing δ (e.g. by increasing B) clearly improves the

condition number and may be expected therefore to enhance

the accuracy of the reconstruction. In CLC sampling large

gaps between samples can occur naturally and the MGC may

be violated. Such a situation is expected to lead to numerical

instability. Our proposed sampling algorithm aims to achieve

the benefits of oversampling by increasing bit-depth but to

avoid the exponential increase in the number of samples.

First, we introduce what we term the reduced CLC (RCLC)

algorithm to exploit redundancy in the parts of the signal

that are over represented. The CLC sampling gives a set

of sample pairs {t′j , f ′
j}. For high bit-depth the set {t′j , f ′

j}
is large and reconstruction is computationally expensive. We

therefore remove samples that are ‘close together’. Sample

t′j+1 is removed if Δ′
j < Tmin = C ∗ TN = C ∗ 1

2BW ,

∀Δ′
j , where Δ′

j = t′j+1 − t′j , Tmin is the minimum temporal

difference between samples, TN is the inverse of the Nyquist

frequency, BW is the bandwidth of the original signal and

C > 0 is a coefficient that enables control over Tmin. This

procedure leads to a reduced LC sample set with new sample

pairs {t′′j , f ′′
j } with a new time interval Δ′′

j = t′′j+1 − t′′j .

Removing samples might violate MGC. We, therefore,

propose an interpolation approach to reduce δ. New samples

are inserted if Δ′′
j > Tmax = T0

2M , where we introduce Tmax

as the maximum temporal difference between samples. First

order interpolation between adjacent samples {t′′j , f ′′
j } and

{t′′j+1, f
′′
j+1} is employed to get the final LC pairs {tj , fj}

used to reconstruct the original signal. We term this algorithm

RCLC sampling with interpolation or RCLCI. One significant

benefit of RCLCI is that we can save the RCLC instead of

RCLCI data set since we can do the interpolation as a part

of the digital to analogue converter (DAC); This makes the

proposed sampling method very efficient.

IV. SIMULATION

Simulations were carried out in MATLAB using a speech

signal sourced from the TIMIT database [17]. The signal

was upsampled from the original 16kHz to 10MHz to enable

highly accurate approximation of the LC samples. However,

it does not affect the cost because in practice the algorithms

are designed for continuous time signals and no upsampling

is required. The oversampled signal was partitioned into 50%
overlapping frames, Wk [12] each of duration T0 = 10ms. Wk

is called capture frame. We designate the central sub-frame

within Wk as a separate frame, wk ⊂ Wk, and call it the

evaluation frame. wk is of length T0

2 . The partitioning of these
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frames is illustrated in Fig. 1. We apply a Hamming window to

reduce end effects followed by the RCLCI sampling algorithm

before reconstructing the signal using the ACT method on each

capture frame. To further reduce end effects 1
4 of each capture

frame is discarded. The frames are then concatenated to

reconstruct the whole signal. Accuracy of signal reconstruction

is expressed using SNR between the original signal f(t) and

the reconstruction pM (t),

SNR = 10 log

∑
n f

2[n]∑
n (f [n]− pM [n])

2 (8)

where pM [n] = pM (t = nT ).

V. RESULTS

A. RCLC and RCLCI Sampling

Fig. 2 illustrates SNR Vs M using CLC and RCLC samples.

Clearly the SNR is dependent on the choice of M . As

M increases the fitted polynomial captures higher frequency

content and hence the SNR initially improves; but for large

M numerical instability occurs, particularly at low bit-depth,

because the MGC in (2) becomes violated. Transition to

unstable reconstruction is observed approximately at values

of M = 50, 90 for B = 8, 10 respectively.

The RCLC algorithm aims to improve the energy efficiency

of the sampling process by reducing the number of samples

acquired. For B = 8, 10, 15, the CLC sampling method

generates 1306, 5224, 167004 samples respectively; while

RCLC reduces the number of samples to 323, 421, 522. This

comparison shows high redundancy in the CLC samples. The

same SNR is observed in both cases despite the removal of

samples by the RCLC sampling scheme; e.g. for B = 15 the

RCLC algorithm removes more than 99% of the samples and

yet the maximal SNR is unchanged. This observation implies

that in the design of LC ADCs the performance is strongly

affected by the distribution of the time intervals between

samples.

Fig. 3 demonstrates the number of intervals that violate

MGC in the RCLC sampling algorithm. It is observed for

approximately zero intervals violating the MGC, e.g. B = 15,

the SNR is maximised (Fig. 2). For B = 8, 10 where

we have a reasonable number of violations the SNR is

reduced. This observation clearly shows when MGC is not

met there is no guarantee the trigonometric polynomial is a

good approximation [14]. One is therefore led to conclude

that the number of large intervals does impact adversely on

the reconstruction accuracy; numerical stability governs the

accuracy.

Fig. 1 Partitioning of signal into capture frames Wk and evaluation frames
wk , adapted from [12]

Fig. 2 SNR Vs M using CLC and RCLC sampling methods on a windowed 
time speech frame for C = 0.3 and B = 8, 10, 15

Another interesting observation is that the SNR does not

depend directly on the bit-depth i.e. increasing bit-depth does

not necessarily lead to an increase in the SNR. In regions of

stable reconstruction, the SNR is the same for all bit-depths

and only depends on the value of M used in the reconstruction

[18]. For example, for M ≤ 50 the number of violations

of MGC for B = 8, 10, 15 is near 0. Although some of

the intervals violate the MGC, it is still numerically stable.

However, increasing bit-depth reduces the maximum gap size

δ thus enabling stable reconstruction at higher values of M .

These observations lead to a practical recommendation for the

choice of M . The largest value of M for which the MGC is

satisfied gives the maximum SNR; hence M = T0

2δ .

Although increasing M improves the SNR, ultimately

numerical instability limits the maximum value of M that can

be used. When the MGC is violated the instability occurs;

this significantly affects the signal reconstruction quality. In

principle, using a high bit-depth to decrease δ can reduce

numerical instability. However, since the value of δ depends

also on the statistics of the signal this approach cannot

guarantee success. We, therefore, use the RCLCI sampling

algorithm to satisfy MGC.

Fig. 4 shows how varying coefficient C impacts SNR and

the number of samples in the RCLCI method. The dashed line

Fig. 3 Number of intervals that violate MGC in RCLC method on a 
windowed time speech frame for C = 0.3 and B = 8, 10, 15
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(a) (b)

Fig. 4 (a) Number of RCLCI samples and (b) SNR of RCLCI samples Vs C on a windowed time speech frame for B = 5, 8, 9, 10 and M = T0
2CTN

shows the number of samples that are required to satisfy the

Nyquist criteria under conditions of uniform sampling. The

input bandwidth of the signal is 8kHz and a sampling rate

of 16KHz leads to 160 samples in a 10ms time window. C
determines Tmin and hence controls the redundancy between

samples. C = 1 corresponds, approximately, to a sampling

rate that just satisfies Nyquist criteria. The value of M that

optimises the SNR is approximated when Tmax = Tmin.

This condition can be used to calculate the optimal value

as M = T0

2CTN
. For each value of C, the optimal value of

M is used to reconstruct the signal. It can be observed that

C < 1 provides more data points, because it reduces the

minimum time interval Tmin, and yields high SNR. However,

if C is increased beyond the Nyquist sampling interval,

reasonable reconstruction can still be achieved. For instance,

for C = 2, the points are rejected at twice the Nyquist rate,

M = 40 and B = 10, RCLCI generates only 155 points,

while SNR is as high as 33 dB. Because interpolation helps

to prevent numerical instability. Fig. 4 demonstrates a good

choice of C provides coding efficiency and also a good SNR

reconstruction.

We also note that the RCLCI algorithm enhances SNR

at low bit-depths and the erratic variation in SNR due

to numerical instability no longer exists. For instance, the

comparison of Fig. 4 and Fig. 2 demonstrates for C = 0.3,

B = 8 and using the optimal value M = 260, the RCLCI

technique delivers approximately 53 dB; whilst the numerical

instability is observed in CLC and RCLC techniques.

B. Aliasing Effect on Sinusoidal Signal

The RCLC and RCLCI algorithms aim to remove

aliasing effect. We consider this analysis in this section

for an asymptotically generated periodic signal. Preliminary

investigations of aliasing effect using the proposed RCLCI

sampling and reconstruction methods were carried out

in MATLAB on a 12 harmonic sinusoidal input signal,

each harmonic at 1kHz separation, with 100Hz frequency

resolution.

To see the impact of aliasing we start from a position where

we have high SNR. We picked C = 0.5 to have at least 240

samples to ensure the MGC is satisfied and we can resolve

the bandwidth; This should give a high SNR starting point.

The aliasing is then introduced by increasing the bandwidth

of the signal through adding extra frequency component

beyond 12kHz. We define it as ‘out-of-band frequency

component’. The impact of weak out-of-band signals can be

more accurately assessed by choosing sampling parameters

that minimise spectral leakage and hence yield a very low

noise floor. An out-of-band high frequency component was

added at 36kHz with an amplitude specified as a fraction of

the root mean square (RMS) of the signal.

The impact of aliasing can be assessed by looking

at the spectrum of the fitted Fourier coefficients aM .

Fig. 5 demonstrates the spectrum of the original signal

and the Fourier coefficients without introducing out-of-band

component for M = 120 and B = 10. Clearly 24 sharp spikes

with a noise floor of −290dB is observed. The remarkably

small background indicates there is no spectral leakage and,

hence, we have effectively achieved robust reconstruction.

We define ‘an alias component’ as a narrowband peak in

the in-band spectrum below the Nyquist frequency due to the

Fig. 5 Spectrum of the original signal and the Fourier coefficients of 
reconstructed signal using RCLCI sampling method on a 12 harmonic 

sinusoidal signal for C = 0.5, M = 120 and B = 10
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(a) (b)

Fig. 6 Spectrum of the original signal and the Fourier coefficients of reconstructed signal using RCLCI sampling method on a 12 harmonic sinusoidal signal for C 
= 0.5, M = 120 and B = 10 when the amplitude of the out-of-band frequency component, is (a) −192.21 dB and (b) −92.21 dB

(a) (b)

Fig. 7 (a) SNR and (b) noise floor Vs amplitude of the out-of-band frequency component using RCLCI sampling method on a 12 harmonic sinusoidal signal 
for C = 0.5, M = 120 and B = 10

out-of-band frequency component.

Fig. 6 compares the Fourier coefficient spectrum for two

different amplitude of the out-of-band frequency component,

−192.21 dB and −92.21 dB. It is notable that aliasing

does not occur to happen in a single point in the frequency

domain. The energy of the aliased component is still in the

spectrum but not at a particular component. This energy is

being spread to other regions; It is being whitened. Hence,

the system is alias-free but with an increased noise floor.

We define ‘aliasing noise floor’ as a noise floor generated

by the out-of-band harmonic component; The power in the

out-of-band component is converted to white noise and added

to the spectral background of baseband. The system is

classified as ’alias-free’ when there is no alias component

even though the noise background increases. We note that the

aliasing noise floor is approximately 60dB and 160dB higher

than the background in the original spectrum in panels (a) and

(b) respectively.

The impact of aliasing can be measured systematically.

Fig. 7 demonstrates how SNR (panel (a)) and the spectral

background level (panel (b)) changes as a function of

the amplitude of the out-of-band frequency component.

As expected, reducing the amplitude achieves higher

SNRs. Furthermore, Fig. 7(b) clearly demonstrates that

the out-of-band frequency component is effectively being

whitened, turned into noise and added as an aliasing noise

floor. Indeed, if we set the amplitude of this out-of-band

component to 0, this noise floor would also drop down to

−300dB.

It is also necessary to understand the relationship between

the power in the out-of-band frequency component and the

power in the aliasing noise floor. Fig. 8 compares these two

powers. The power of the signal is expressed as sum of the

absolute squares of its time domain samples divided by the

signal length,

Px = lim
N→∞

1

2N + 1

N∑
n=−N

|x[n]|2 (9)

It is notable that the power of the out-of-band component

is almost identical to the additional power in spectral

background. This observation further supports the proposition

that the energy in the out-of-band peak is now distributed

across the whole spectrum; There is almost an exact

correspondence between the increase in the size of the noise

floor and the amplitude of the out-of-band component.
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It is of some interest to compare the RCLCI method

to standard ADC theory. We therefore now consider a

standard uniform sampling method (Fig. 9). We introduced

an out-of-band frequency component at 37kHz and uniformly

sampled the same 12 harmonic sinusoidal input signal using

the same sampling frequency as the RCLC sampling rate.

As expected, an alias component is observed at the folding

frequency, at 10.1kHz, in Fig. 9; Clearly due to the spectral

leakage smaller amplitude of an alias component is observed.

One is therefore led to conclude that the observed alias-free

phenomena occurs because of the RCLCI sampling approach

and not because of the ACT reconstruction method.

C. Aliasing Effect on Speech Signal

In this section we investigate the impact of aliasing using

the speech signal. We took the TIMIT signal and added

a single out-of-band frequency component at 25kHz, which

is well beyond the bandwidth of the signal, 8kHz. Fig. 10

demonstrates the spectrum of this original signal when the

amplitude of the out-of-band component is 10% of the signal’s

RMS.

The comparison of the Fourier coefficients of the

reconstructed signal using RCLC, RCLCI and standard

uniform sampling methods and ACT reconstruction technique

for C = 0.5, M = 130 and B = 7 is also illustrated

in Fig. 11. The top and middle panels indicate RCLC and

RCLCI sampling is alias-free in a sense that power in the

out-of-band component is not reflected back to a single peak; it

is added to the total noise background. Since the amplitude of

the out-of-band component is 10% of the signal’s RMS, 10th

of the energy is redistributed in the reconstructed spectrum

across all frequencies. However, an alias component is clearly

observed using standard uniform sampling method (Bottom

panel). We uniformly sampled the signal using the same

sampling frequency as the RCLCI sampling rate. Indeed one

expects a single alias component to be observed at the folding

frequency, at 9.3kHz. This observation is consistent with the

results in the previous section for the sinusoidal input signal.

Fig. 8 Comparison of power in the out-of-band frequency component and 
the power in the aliasing noise floor using RCLCI sampling method on a 12 

harmonic sinusoidal signal for C = 0.5, M = 120 and B = 10

Fig. 12 monitors the effect of changing the amplitude of

the out-of-band frequency component on SNR and aliasing

noise floor for C = 0.5 and M = 130. We chose B = 6
since this provides alias-free behaviour using RCLC and

RCLCI sampling methods and hence, aliasing noise floor

level can clearly be investigated. According to panel (a), the

SNR is strongly affected by the choice of amplitude. As

expected, smaller amplitudes achieve higher SNRs. It can

also be observed that the SNR plateaus as the amplitude is

reduced. This is perhaps not surprising because the signal

with tiny amplitude variation, due to the out-of-band high

frequency component, is likely to cross the thresholds for

lower bit-depths. This leads to no further information for

signal reconstruction and, hence, the SNR plateaus. However,

similar behaviour as Fig. 7(a) is observed for higher bit-depths

(B ≥ 10).

Fig. 12(b) compares the power in the out-of-band frequency

component and the power in the aliasing noise floor. Noise

floor is achieved by the subtraction of two sets of Fourier

coefficient spectrum with and without out-of-band component.

The difference in amplitude quantifies the increased power in

the spectral background due to the presence of out-of-band

high frequency component; Higher amplitude, higher level

of aliasing noise floor. This figure suggests that there is a

broadband additive white noise in spectrum.

Fig. 13 illustrates the spectrum of the fitted Fourier

coefficients for a fixed amplitude, −61.53 dB, and frequency,

25kHz, of the out-of-band component and for B =
6, 7, 10, 11, 14, 15. The comparison of the spectrum for B =
6, 7 and the original spectrum (Fig. 10) demonstrates that

RCLCI sampling method is alias-free for B = 6 and almost

B = 7 because there is no sharp peak as an alias component.

Furthermore, the spectral background level is increased by

approximately 10 dB for frequencies between 10kHz and

13kHz. The aliasing noise floor is introduced by being added

to the broadband background.

In principle, for lower bit-depths, fewer of samples would be

close to Tmin in the rejection step (RCLC) and, therefore, the

time interval between samples is more randomised. Whilst for

higher bit-depths, larger number of samples fall very close to

Tmin; This increases correlation between the points and hence

makes the sample set more uniform and uniformity gives rise

to sharp alias component.

It is observed in Fig. 13 that as the bit-depth goes up, the

alias component is getting sharper whilst the background noise

is reduced. For instance, comparing B = 10 and 15 shows that

the amplitude of the alias component is increased by 2.23 dB

for B = 15 but the level of the spectral background is reduced

by approximately 10 dB for frequencies between 10kHz and

13kHz. This figure is a beautiful illustration of how we change

the bit-depth and hence make the signal more uniform and we

go from alias-free situation, B = 6, where the background is

larger than fully alias scenario, B = 15, where we have strong

alias component but the random background is reduced.

Another interesting observation is that according to Table I,

SNR is approximately identical for all bit-depths; i.e.,

increasing bit-depth does not necessarily lead to improve the

performance. In regions of stable reconstruction, the SNR
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(a) (b)

Fig. 9 Spectrum of the original signal and the Fourier coefficients of reconstructed signal using RCLCI sampling method on a 12 harmonic sinusoidal signal for C 
= 0.5, M = 120 and B = 10 when the amplitude of the out-of-band frequency component is (a) −12.21 dB and (b) −92.21 dB

Fig. 10 Spectrum of the original signal using RCLCI sampling method on a 
windowed time speech frame for C = 0.5, M = 130 and B = 7

only depends on the value of M used in the reconstruction

[18]. This observation suggests that RCLCI stabilises the

reconstruction at lower bit-depths and also benefits from no

aliasing property.

The presence of an alias component for high bit-depths due

to increased uniformity of the distribution can be diminished

by introducing jitter to Tmin; We have effectively a jittered

sampling scheme. Adding jitter makes the RCLCI sample set

more randomised. The statistic of the jitter in our system is the

statistics of the signal itself crossing the thresholds whereas

in a standard jittered system the statistics of the added noise

can be controlled.

Fig. 14 illustrates the spectrum of the Fourier coefficients

and Table II shows the SNR and the number of samples when

TABLE I 
SNR AND THE NUMBER OF SAMPLES USING RCLCI SAMPLING METHODS ON A 

WINDOWED TIME SPEECH FRAME FOR C = 0.5, M = 130 AND
B = 6, 7, 10, 11, 14, 15

B 6 7 10 11 14 15

SNR(dB) 21.51 21.47 21.38 21.37 21.38 21.37
# sample 409 343 322 318 321 321

(a)

(b)

(c)

Fig. 11 Spectrum of the Fourier coefficients of reconstructed s ignal using (a) 
RCLC, (b) RCLCI and (c) uniform sampling methods on a windowed time 

speech frame for C = 0.5, M = 130 and B = 7

applying jitter for the same amplitude and frequency of the

out-of-band component as Fig. 13 and B = 6, 7, 10, 11, 14, 15.

Clearly, introducing jitter and hence increasing the randomness

of the time intervals between samples will reduce the aliasing

effect and broaden sharp peak of alias component, particularly

for high bit-depths without any effect on SNR. Indeed, the

out-of-band frequency component is converted from harmonic

distortion to white noise. This is consistent with the known

results in literature [9], [19]. One is therefore led to conclude

that the randomness of sample intervals has a strong bearing

on alias-free behaviour.
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(a) (b)

Fig. 12 (a) SNR Vs amplitude of the out-of-band frequency component and (b) power in the aliasing noise floor Vs power in the out-of-band frequency 
component using RCLCI sampling method on a windowed time speech frame for C = 0.5, M = 130 and B = 6

(a) (b) (c)

(d) (e) (f)

Fig. 13 Spectrum of the Fourier coefficients of reconstructed signal using RCLCI sampling method on a windowed time speech frame for C = 0.5, 
M = 130 and (a) B = 6, (b) B = 7, (c) B = 10, (d) B = 11, (e) B = 14 and (f) B = 15

VI. CONCLUSION

New sampling methods in conjunction with ACT

reconstruction algorithm are observed to facilitate alias-free

signal reconstruction. These efficient methods exploit

redundancy between samples and enhance the numerical

stability. The results also demonstrate that whitening of

the aliased components reduces the effective bit-depth of

the LC ADC but beneficially results in highly efficient

coding. Hardware implementations would benefit from low

TABLE II 
SNR AND THE NUMBER OF SAMPLES USING RCLCI SAMPLING METHODS ON A 

WINDOWED TIME SPEECH FRAME WHEN APPLYING JITTER FOR C = 0.5,
M = 130 and B = 6, 7, 10, 11, 14, 15.

B 6 7 10 11 14 15

SNR(dB) 21.55 21.62 21.28 21.15 21.53 21.48
# sample 399 362 327 322 324 320

bandwidth requirements (reduced sampling rates) and require

no anti-aliasing filters.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:5, 2022 

183International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
56

3.
pd

f



(a) (b) (c)

(d) (e) (f)

Fig. 14 Spectrum of the Fourier coefficients of reconstructed signal using RCLCI sampling method on a windowed time speech frame when applying jitter 
for C = 0.5, M = 130 and (a) B = 6, (b) B = 7, (c) B = 10, (d) B = 11, (e) B = 14 and (f) B = 15
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