Search results for: gully properties
2308 Optimizing PelletPAVE™ Rubberized Asphalt Mix Design Using Gyratory Compaction and Volumetrics
Authors: H. Al-Baghli
Abstract:
In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high temperature rutting, and moisture induced raveling. PelletPAVE™ additive was selected as the preferred technology, since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work, using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.
Keywords: Modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3462307 Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method
Authors: M. Babaeipour, M. Vejdanihemmat
Abstract:
Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.
Keywords: 1H-CaAlSi, absorption, bulk, optical, thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9092306 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: Elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6112305 Soybean and Fermented Soybean Extract Antioxidant Activities
Authors: W. Samruan, A. Oonsivilai, R. Oonsivilai
Abstract:
Today, people are more interested in the foods beneficial on their health. However, there are still lacks of accurate knowledge in the field of biological properties, functional properties, including the application of legume in foods. This study focused on antioxidant activity of soybean (SB) and fermented soybean (FSB) crude extracts evaluating to have more information in fortification SB and FSB crude extracts in food products and/or dietary supplement. SB and FSB crude extracts were prepared by infusion with water and ethanol. The antioxidant activity of crude extracts was studied with DPPH and ABTS assay including commercial standard. From both DPPH and ABTS assay, the antioxidant activity of SB and FSB water crude extract showed higher antioxidant activity than ethanol crude extract, and FSB crude extract showed higher antioxidant activity than SB crude extract. In DPPH assay, BHT and vitamin C showed IC50 values at 0.241, 0.039 mg/ml, in ABTS assay. In addition, Trolox showed IC50 at 0.058 mg/ml respectively. FSB water crude extract showed high antioxidant activity. Finally, the functional properties study of both water and ethanol crude extracts should be done for beneficial in application of these extracts in food products and dietary supplement in the near future.Keywords: Antioxidant activity, Fermented soybean (FSB) crude extracts, soybean (SB) crude extracts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43762304 An Investigation on Fresh and Hardened Properties of Concrete while Using Polyethylene Terephthalate (PET) as Aggregate
Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, Md. Salamah Meherier
Abstract:
This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.
Keywords: Polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32762303 Temporal Variation of Surface Runoff and Inter-Rill Erosion in Different Soil Textures of a Semi-Arid Region, Iran
Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam
Abstract:
Inter-rill erosion is the detachment and transfer of soil particles between the rills which occurs due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of inter-rill erosion during a rainfall event and the effect of soil properties on it can help develop better methods to soil conservation in the hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and inter-rill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. Soil properties including particle size distribution, aggregate stability, bulk density, exchangeable sodium percentages (ESP) and hydraulic conductivity (Ks) were determined in the soil samples. Correlation and regression analysis was done to determine the effect of soil properties on runoff and inter-rill erosion. Results indicated that the study soils have lower both organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher ESP. Runoff production and soil loss did not occur in sand texture, which was associated with higher infiltration and drainage rates. A strong relationship was found between inter-rill erosion and surface runoff (R2 = 0.75, p < 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, Ks, lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more inter-rill erosion. In the soils, surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.
Keywords: Erosion plot, rainfall simulator, soil properties, surface flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652302 Optimized Algorithm for Particle Swarm Optimization
Authors: Fuzhang Zhao
Abstract:
Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.Keywords: Diversification search, intensification search, optimal weighting, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18682301 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements
Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray
Abstract:
Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.
Keywords: Bender element, ground response analysis, MASW, resonant column test, SCPT, torsional shear test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11242300 Adhesion Properties of Bifidobacterium Pseudocatenulatum G4 and Bifidobacterium Longum BB536 on HT-29 Human Epithelium Cell Line at Different Times and pH
Authors: Ali Q. S., Farid A. J., Kabeir B. M., Zamberi S., Shuhaimi M., Ghazali H. M., Yazid A. M.
Abstract:
Adhesion to the human intestinal cell is considered as one of the main selection criteria of lactic acid bacteria for probiotic use. The adhesion ability of two Bifidobacteriums strains Bifidobacterium longum BB536 and Bifidobacterium psudocatenulatum G4 was done using HT-29 human epithelium cell line as in vitro study. Four different level of pH were used 5.6, 5.7, 6.6, and 6.8 with four different times 15, 30, 60, and 120 min. Adhesion was quantified by counting the adhering bacteria after Gram staining. The adhesion of B. longum BB536 was higher than B. psudocatenulatum G4. Both species showed significant different in the adhesion properties at the factors tested. The highest adhesion for both Bifidobacterium was observed at 120 min and the low adhesion was in 15 min. The findings of this study will contribute to the introduction of new effective probiotic strain for future utilization.Keywords: Bifidobacterium, Adhesion, HT-29 human epithelium cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18502299 Improvement of Deficient Soils in Nigeria Using Bagasse Ash: A Review
Authors: Musa Alhassan, Alhaji Mohammed Mustapha
Abstract:
Review of studies carried out on the use of bagasse ash for the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizers (cement and lime), the studies generally showed improvement in the geotechnical properties of the soils, either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils, thus suggesting that using this material at large scale level in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in Nigeria.Keywords: Bagasse ash, Black cotton soil, Deficient soil, Laterite, Soil improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30572298 Fabrication and Characterization of Sawdust Composite Biodegradable Film
Authors: M.Z. Norashikin, M.Z. Ibrahim
Abstract:
This report shows the performance of composite biodegradable film from chitosan, starch and sawdust fiber. The main objectives of this research are to fabricate and characterize composite biodegradable film in terms of morphology and physical properties. The film was prepared by casting method. Sawdust fiber was used as reinforcing agent and starch as polymer matrix in the casting solution. The morphology of the film was characterized using atomic force microscope (AFM). The result showed that the film has smooth structure. Chemical composition of the film was investigated using Fourier transform infrared (FTIR) where the result revealed present of starch in the film. The thermal properties were characterized using thermal gravimetric analyzer (TGA) and differential scanning calorimetric (DSC) where the results showed that the film has small difference in melting and degradation temperature.Keywords: Sawdust, composite, film, biodegradable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26052297 Physical Properties and Resistant Starch Content of Rice Flour Residues Hydrolyzed by α-Amylase
Authors: Waranya Pongpaiboon, Warangkana Srichamnong, Supat Chaiyakul
Abstract:
Enzymatic modification of rice flour can produce highly functional derivatives use in food industries. This study aimed to evaluate the physical properties and resistant starch content of rice flour residues hydrolyzed by α-amylase. Rice flour hydrolyzed by α-amylase (60 and 300 u/g) for 1, 24 and 48 hours were investigated. Increasing enzyme concentration and hydrolysis time resulted in decreased rice flour residue’s lightness (L*) but increased redness (a*) and yellowness (b*) of rice flour residues. The resistant starch content and peak viscosity increased when hydrolysis time increased. Pasting temperature, trough viscosity, breakdown, final viscosity, setback and peak time of the hydrolyzed flours were not significantly different (p>0.05). The morphology of native flour was smooth without observable pores and polygonal with sharp angles and edges. However, after hydrolysis, granules with a slightly rough and porous surface were observed and a rough and porous surface was increased with increasing hydrolyzed time. The X-ray diffraction patterns of native flour showed A-type configuration, which hydrolyzed flour showed almost 0% crystallinity indicated that both amorphous and crystalline structures of starch were simultaneously hydrolyzed by α-amylase.
Keywords: α-Amylase, Enzymatic hydrolysis, Pasting properties, Resistant starch
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30952296 Determination of Some Chemical Properties of Uncommon Flours
Authors: Sónia C. Andrade, Solange F. Oliveira, Raquel P. F. Guiné, Paula M. R. Correia
Abstract:
Flours of wheat, chestnut, acorn and lupin were evaluated in relation to phenolic compounds, antioxidant activity, and oxalate content. At the chemical level the results show some variability between samples by type of flour, and the sample of chestnut flour presented the higher value of oxalate (0.00348 mg/100g) when compared to the other samples in the study. Considering the content of phenolic compounds, the sample that stood out was the acorn flour, having a high value of 0.812 g AGE/100 g. All the samples presented intermediate content of antioxidant activity and the sample that showed a slightly higher value was the wheat flour with a value of 0.746 mM TRE/g sample.
Keywords: Wheat, Acorn, Lupine, Chestnut, Flour, Antioxidant properties, Oxalate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24282295 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.
Keywords: Exciton, Refractive index change, Extinction ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20132294 Energy Efficient Recycling of in-Plant Fines
Authors: H. Ahmed, A. Persson, L. Sundqvist, B. Biorkman
Abstract:
Numerous amounts of metallurgical dusts and sludge containing iron as well as some other valuable elements such as Zn, Pb and C are annually produced in the steelmaking industry. These alternative iron ore resources (fines) with unsatisfying physical and metallurgical properties are difficult to recycle. However, agglomerating these fines to be further used as a feed stock for existing iron and steelmaking processes is practiced successfully at several plants but for limited extent.
In the present study, briquettes of integrated steelmaking industry waste materials (namely, BF-dust and sludge, BOF-dust and sludge) were used as feed stock to produce direct reduced iron (DRI). Physical and metallurgical properties of produced briquettes were investigated by means of TGA/DTA/QMS in combination with XRD. Swelling, softening and melting behavior were also studied using heating microscope.
Keywords: Iron and Steel Wastes, Recycling, Self-Reducing Briquettes, Thermogravimetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23972293 Low Sulfur Diesel Like Fuel Oil from Quick Remediation Process of Waste Oil Sludge
Authors: Isam A. H. Al Zubaidi
Abstract:
Low sulfur diesel like fuel oil was produced from a quick remediation process of waste oil sludge (WOS). This quick process will reduce the volume of the WOS in petroleum refineries as well as oil fields by transferring the waste to more beneficial product. The practice includes mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixed for 10 minutes using a bench-type overhead stirrer, and followed by the filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of WOS was decreased by about 60% by mass. This means that about 60% of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black. The sulfur content was increased also. This requires another process to reduce the sulfur content of resulting light fuel. A desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl2 activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.
Keywords: Oil sludge, diesel fuel, blending process, filtration process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3432292 Relating Interface Properties with Crack Propagation in Composite Laminates
Authors: Tao Qu, Chandra Prakash, Vikas Tomar
Abstract:
The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.
Keywords: Chitin, composites, interfaces, fracture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14062291 Antimicrobial Properties of a Type of Drug Supplement: Nutrition Bio-Shield Superfood
Authors: Azam Bayat, Aref Khalkhali, Ali Reza Mahjoub
Abstract:
In this research, a type of drug supplement was synthesized by a green route. This organic biomaterial was named Nutrition Bio-Shield Superfood (NBS). Due to the destructive effects of various infectious diseases, their increasing prevalence and the lack of appropriate medication for treatment, the present study aimed to evaluate antimicrobial properties of the NBS dietary supplement. In the study of the simple effect of concentrations on the inhibitory diameter of the growth of the common bacteria involved in infectious diseases of the human body, the highest diameter of the halo was related to the concentration of 100 mg/ml and the least of them was the concentration of 12.5 mg/ml dietary supplement. In general, the NBS drug supplement increases the level of immunity in human body.
Keywords: Drug supplement, biomaterial, antimicrobial, human body.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382290 Eco-Friendly Natural Filler Based Epoxy Composites
Authors: Suheyla Kocaman, Gulnare Ahmetli
Abstract:
In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.
Keywords: Biobased composite, epoxy resin, mechanical properties, natural fillers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21252289 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.
Keywords: Ampere’s force law, dynamical response, fatigue and fracture characterization, paired wire actuators and sensors, MEMS/NEMS devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9852288 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.
Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30422287 Synthesis of Y2O3 Films by Spray Coating with Milled EDTA·Y·H Complexes
Authors: Keiji Komatsu, Tetsuo Sekiya, Ayumu Toyama, Atsushi Nakamura, Ikumi Toda, Shigeo Ohshio, Hiroyuki Muramatsu, Hidetoshi Saitoh, Atsushi Nakamura, Ariyuki Kato
Abstract:
Yttrium oxide (Y2O3) films have been successfully deposited with yttrium-ethylenediamine tetraacetic acid (EDTA·Y·H) complexes prepared by various milling techniques. The effects of the properties of the EDTA·Y·H complex on the properties of the deposited Y2O3 films have been analyzed. Seven different types of the raw EDTA·Y·H complexes were prepared by various commercial milling techniques such as ball milling, hammer milling, commercial milling, and mortar milling. The milled EDTA·Y·H complexes exhibited various particle sizes and distributions, depending on the milling method. Furthermore, we analyzed the crystal structure, morphology and elemental distribution profile of the metal oxide films deposited on stainless steel substrate with the milled EDTA·Y·H complexes. Depending on the milling technique, the flow properties of the raw powders differed. The X-ray diffraction pattern of all the samples revealed the formation of Y2O3 crystalline phase, irrespective of the milling technique. Of all the different milling techniques, the hammer milling technique is considered suitable for fabricating dense Y2O3 films.
Keywords: Powder sizes and distributions, Flame spray coating techniques, Yttrium oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26272286 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics
Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen
Abstract:
Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400 ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.
Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20122285 Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique
Authors: Shagufta Tabassum, V. P. Pawar
Abstract:
The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε∞) and relaxation time (τ).
Keywords: Excess parameters, relaxation time, static dielectric constant, time domain reflectometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7252284 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.
Keywords: Asphalt, basalt, pavement, recycled aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9702283 Evaluation on Recent Committed Crypt Analysis Hash Function
Authors: A. Arul Lawrence Selvakumar, C. Suresh Ganandhas
Abstract:
This paper describes the study of cryptographic hash functions, one of the most important classes of primitives used in recent techniques in cryptography. The main aim is the development of recent crypt analysis hash function. We present different approaches to defining security properties more formally and present basic attack on hash function. We recall Merkle-Damgard security properties of iterated hash function. The Main aim of this paper is the development of recent techniques applicable to crypt Analysis hash function, mainly from SHA family. Recent proposed attacks an MD5 & SHA motivate a new hash function design. It is designed not only to have higher security but also to be faster than SHA-256. The performance of the new hash function is at least 30% better than that of SHA-256 in software. And it is secure against any known cryptographic attacks on hash functions.
Keywords: Crypt Analysis, cryptographic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13372282 Comparison Mechanical and Chemical Treatments on Properties of Low Yield Bagasse Pulp During Recycling
Authors: Parizad Sheikhi, Mohammad Talaeipour
Abstract:
the effects of refining and alkaline chemicals on potential of recycling bleached chemical pulp of bagasse were investigated in this study. Recycling was done until three times. Handsheet properties such as, apparent density, light scattering coefficient, tear index, burst index, breaking length, and fold number according to TAPPI standard were measured. Water retention value also was used to considering the treatments during recycling. Refining enhanced the strength of recycled pulp by increasing fiber flexibility and swelling ability, whereas by applying chemical treatment didn't observe any improvement. The morphology of recycled fiber was considered with scanning electron microscopy (SEM).
Keywords: Bagasse pulp, chemical treatment, recycling, refining, scanning electron microscopy, water retention value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26822281 Effect of Incorporating Silica Fume in Fly Ash Geopolymers
Authors: Suresh Thokchom, Debabrata Dutta, Somnath Ghosh
Abstract:
This paper presents results of an experimental study performed to investigate effect of incorporating silica fume on physico-mechanical properties and durability of resulting fly ash geopolymers. Geopolymer specimens were prepared by activating fly ash incorporated with additional silica fume in the range of 2.5% to 5%, with a mixture of sodium hydroxide and sodium silicate solution having Na2O content of 8%. For studying durability, 10% magnesium sulphate solution was used to immerse the specimens up to a period of 15 weeks during which visual observation, weight changes and strength changes were monitored regularly. Addition of silica fume lowers performance of geopolymer pastes. However, in mortars, addition of silica fume significantly enhanced physico-mechanical properties and durability.
Keywords: Fly ash, silica fume, geopolymer, apparent porosity, sorptivity, compressive strength, durability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37082280 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles
Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh
Abstract:
Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.
Keywords: Low temperature luminescence spectroscopy, Material Identification, Strontium aluminates phosphor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23542279 Effect of Particle Size on Alkali-Activation of Slag
Authors: E. Petrakis, V. Karmali, K. Komnitsas
Abstract:
In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.
Keywords: Alkali activated materials, compressive strength, particle size distribution, slag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659