Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique
Authors: Shagufta Tabassum, V. P. Pawar
Abstract:
The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε∞) and relaxation time (τ).
Keywords: Excess parameters, relaxation time, static dielectric constant, time domain reflectometry.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1474553
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715References:
[1] A. V. Patil, G. N. Shinde, V. P. Pawar, “Dielectric relaxation study of hydrogen bonded structures in ethanolamine with diethanolamine using TDR technique,” J. Mol. Liq., 168, April. 2012, pp.42-46.
[2] A. V. Patil and V. P. Pawar, “Microwave dielectric spectra and molecular interaction in a binary mixture of ethanolamine with diethanolamine,” J. Mol. Liq., 188, Dec. 2013, pp.1-4.
[3] A. V. Patil, B. D. Achole, G. N. Shinde and V. P. Pawar, “Study of molecular interaction in binary mixture of dimethylene chloride with dimethylformamide using Bruggeman model,” Scholars Research Library, Archives of Applied Science Research, 4(4), 2012, pp.1665-1669.
[4] T. Thenappan and U. Sankar. “Dielectric Studies of Hydrogen Bonded Complexes of Alcohols with N, N- Dimethylformamide,” J. Mol. Liq, 126, 2006, pp. 38-42.
[5] Vogel, Textbook of Practical Organic Chemistry (Longman Singapore Publishers Pte Ltd.) 5th edition 1989.
[6] V.P. Pawar, A.V. Patil and S.C. Mehrotra, “Dielectric Relaxation Study of Acetonitrile with 1,2-dichloroethane Using TDR, in Conf. Rec. 2011 IEEE Xplore Int. Conf. Communications, pp.1-4.
[7] V. P. Pawar, A. V. Patil, A. R. Patil, S. C. Mehrotra, “Dielectric relaxation study of solute–solvent interaction between dimethylene chloride and dimethylformamide using time domain reflectometry,” J. Mol. Liq.,155, Aug. 2010, pp.16-19.
[8] B. D. Achole, A. V. Patil, V. P. Pawar, S. C. Mehrotra, “Study of interaction through dielectrics: behaviour of –OH group molecules from 10MHz to 20GHz,” J. Mol. Liq., 159, March. 2011, pp.152-156.
[9] R. J. Sengwa, S. Sankhla, V. Khatri, “Dielectric constant and molecular association in binary mixture of N, N-dimethylethanolamine with alcohols and amides,” Fluid Phase Equilib., 285, 2009, pp.50-53.
[10] A. N. Prajapati, A. D. Vyas, V. A. Rana, S. P. Bhatnagar, “Dielectric relaxation and dispersion studies of mixtures of 1-propanol and benzonitrile in pure liquid state at radio and microwave frequencies,” J. Mol. Liq., 151, 2010, pp.12-16.
[11] V. P. Pawar and A. V. Patil, “Dielectric relaxation studies on molecular interaction in binary mixture of dimethylene chloride with nmethylformamide,” Fluid Phase Equilib., 376, 2014, pp.111-115.
[12] V. P. Pawar, S. C. Mehrotra, “Dielectric relaxation study of liquids having chloro group with liquids: I Chlorobenzene with methanol, ethanol and propan-1-ol,” J. Sol. Chem., 31(7), 2002, pp.559-576.
[13] V. P. Pawar, S. C. Mehrotra, “Dielectric relaxation study of chloro group with associative liquids. II. 1,2-dichloroethane with methanol, ethanol, and 1-propanol,” J. Sol. Chem., 31(7), 2002, pp.577-588.
[14] A. V. Patil and V. P. Pawar, Dielectric relaxation study of dielethanolamine with triethanolamine at melting points using TDR,” Bio-nano Frontier, 8(3), 2015, pp.308-311.
[15] V. P. Pawar and A. V. Patil, “Dielectric and thermodynamic properties in a binary mixture of dimethylene with formamide,” J. Mol. Liq., 206, 2015, pp.239-243.
[16] C. E. Shannon, Communication in the presence of noise., Proc. IRE., 37, 1949, pp.10-21.
[17] H. A. Samulon, Spectrum analysis of transient response curves, Proc. IRE. 1, 39, 1951, pp.175-186.
[18] R. H. Cole, J. G. Berberian, S. Mashimo, G. Chryssikos, A. Burns and E. Touban, Time domain reflection methods for dielectric measurements to 10 GHz, J. Appl. Phys., 66, 1989, pp.793-802.
[19] P. Debye, “Polar Molecule; Chemical Catalog,” Dover, NY, 1929.
[20] P. R. Bevington, “Data reduction and error analysis for the physical sciences,” McGraw Hill: New York, 1969.
[21] M. Tabellout, P. Lanceleur, J. R. Emery, D. Hayward and R.A. Pethrick, “Dielectric, ultrasonic and carbon-13 nuclear magnetic resonance relaxation measurements of t-butyl alcohol-water mixtures,” J. Chem. Soc. Faraday Trans., 86, 1990, pp.1453-1501.
[22] S. C. Mehrotra and J. E. Boggs, Effect of collison-induced phase shifts on the line widths and line shifts of rotational spectral lines, J. Chem. Phys., 66, 1977, pp.5306-5312.
[23] M. I. Aralaguppi, T. M. Aminabhavi, R. H. Balundgi and S. S. Joshi, Thermodynamic interactions in mixtures of bromoform with hydrocarbons, J. Phys. Chem., 95, 1991, pp.5299.
[24] S. F. Al-Azzawl, A. M. Awwad, A. M. Al-Dujaili and M. K. Al-Noori, Dielectric constant and excess volume of pyrrolidone+water at several temperature, J. Che. Engg. Data., 35, 1990, pp.463.
[25] H. Frolhich, “Theory of dielectrics,” Oxford University press, London, 1949.
[26] Lide D R, CRC Handbook of Chemistry and Physics, (CRC Press: Boca Raton), 85th edition, FL 2007, pp.293, 341.