Search results for: elasticity controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 962

Search results for: elasticity controller

392 Modified Fuzzy PID Control for Networked Control Systems with Random Delays

Authors: Yong-can Cao, Wei-dong Zhang

Abstract:

To deal with random delays in Networked Control System (NCS), Modified Fuzzy PID Controller is introduced in this paper to implement real-time control adaptively. Via adjusting the control signal dynamically, the system performance is improved. In this paper, the design process and the ultimate simulation results are represented. Finally, examples and corresponding comparisons prove the significance of this method.

Keywords: Fuzzy Control, Networked Control System, PID, Random Delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
391 Low Power Digital System for Reconfigurable Neural Recording System

Authors: Peng Li, Jun Zhou, Xin Liu, Chee Keong Ho, Xiaodan Zou, Minkyu Je

Abstract:

A digital system is proposed for low power 100- channel neural recording system in this paper, which consists of 100 amplifiers, 100 analog-to-digital converters (ADC), digital controller and baseband, transceiver for data link and RF command link. The proposed system is designed in a 0.18 μm CMOS process and 65 nm CMOS process.

Keywords: multiplex, neural recording, synchronization, transceiver

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
390 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

Sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: Sampled-data control, Sector bound, Solid oxide fuel cell, Time-delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
389 A Novel Optimized JTAG Interface Circuit Design

Authors: Chenguang Guo, Lei Chen, Yanlong Zhang

Abstract:

This paper describes a novel optimized JTAG interface circuit between a JTAG controller and target IC. Being able to access JTAG using only one or two pins, this circuit does not change the original boundary scanning test frequency of target IC. Compared with the traditional JTAG interface which based on IEEE std. 1149.1, this reduced pin technology is more applicability in pin limited devices, and it is easier to control the scale of target IC for the designer.

Keywords: Boundary scan, JTAG interface, Test frequency, Reduced pin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
388 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter

Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi

Abstract:

Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.

Keywords: Ansys ICEPAK, Aluminum Clad PCB, IP 65 enclosure, motor inverter, thermal simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
387 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process

Authors: M. Massour El Aoud, M. Franceschi, M. Maher

Abstract:

The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.

Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
386 Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams

Authors: Khoa Tan Nguyen, Tuan Anh Le, Kihak Lee

Abstract:

This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly ash-based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.

Keywords: Geopolymer concrete beam, finite element method, stress strain relation, modulus elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
385 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles

Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan

Abstract:

In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.

Keywords: Automobile suspension, MATLAB, control system, PID, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
384 Control of Chaotic Dynamical Systems using RBF Networks

Authors: Yoichi Ishikawa, Yuichi Masukake, Yoshihisa Ishida

Abstract:

This paper presents a novel control method based on radial basis function networks (RBFNs) for chaotic dynamical systems. The proposed method first identifies the nonlinear part of the chaotic system off-line and then constructs a model-following controller using only the estimated system parameters. Simulation results show the effectiveness of the proposed control scheme.

Keywords: Chaos, nonlinear plant, radial basis function network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
383 Complexity of Component-based Development of Embedded Systems

Authors: M. Zheng, V. S. Alagar

Abstract:

The paper discusses complexity of component-based development (CBD) of embedded systems. Although CBD has its merits, it must be augmented with methods to control the complexities that arise due to resource constraints, timeliness, and run-time deployment of components in embedded system development. Software component specification, system-level testing, and run-time reliability measurement are some ways to control the complexity.

Keywords: Components, embedded systems, complexity, softwaredevelopment, traffic controller system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
382 Modeling, Analysis and Simulation of 4-Phase Boost Converter

Authors: Nagulapati Kiran, V. Rangavalli, B. Vanajakshi

Abstract:

This paper designs the four-phase Boost Converter which overcomes the problem of high input ripple current and output ripple voltage. Digital control is more convenient for such a topology on basis of synchronization, phase shift operation, etc. Simulation results are presented for open-loop and closed-loop for four phase boost converter. This control scheme is applicable for PFC rectifiers as well. Thus a comparative analysis based on the obtained results is performed.

Keywords: Boost Converter, Bode plot, PI Controller, Four phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4005
381 Finite Time Symplectic Synchronization between Two Different Chaotic Systems

Authors: Chunming Xu

Abstract:

In this paper, the finite-time symplectic synchronization between two different chaotic systems is investigated. Based on the finite-time stability theory, a simple adaptive feedback scheme is proposed to realize finite-time symplectic synchronization for the Lorenz and L¨u systems. Numerical examples are provided to show the effectiveness of the proposed method.

Keywords: Chaotic systems, symplectic synchronization, finite-time synchronization, adaptive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
380 Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell

Authors: Naohiko Honma, Kojiro Suzuki

Abstract:

This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.

Keywords: Aerocapture, flexible aeroshell, optimization, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
379 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
378 A Software of Intrusion Detection Mechanism for Virtual Platforms

Authors: Ying-Chuan Chen, Shuen-Tai Wang

Abstract:

Security is an interesting and significance issue for popular virtual platforms, such as virtualization cluster and cloud platforms. Virtualization is the powerful technology for cloud computing services, there are a lot of benefits by using virtual machine tools which be called hypervisors, such as it can quickly deploy all kinds of virtual Operating Systems in single platform, able to control all virtual system resources effectively, cost down for system platform deployment, ability of customization, high elasticity and high reliability. However, some important security problems need to take care and resolved in virtual platforms that include terrible viruses, evil programs, illegal operations and intrusion behavior. In this paper, we present useful Intrusion Detection Mechanism (IDM) software that not only can auto to analyze all system-s operations with the accounting journal database, but also is able to monitor the system-s state for virtual platforms.

Keywords: security, cluster, cloud, virtualization, virtual machine, virus, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
377 An Interactive Web-based Simulation Tool for Surgical Thread

Authors: A. Ruimi, S. Goyal, B. M. Nour

Abstract:

Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.

Keywords: Cosserat rod-theory, FEM simulations, Modeling, Surgical thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
376 Fuel Cell/DC-DC Convertor Control by Sliding Mode Method

Authors: Farzad Abdous

Abstract:

Fuel cell's system requires regulating circuit for voltage and current in order to control power in case of connecting to other generative devices or load. In this paper Fuel cell system and convertor, which is a multi-variable system, are controlled using sliding mode method. Use of weighting matrix in design procedure made it possible to regulate speed of control. Simulation results show the robustness and accuracy of proposed controller for controlling desired of outputs.

Keywords: DC-DC converter, Fuel cell, PEM, Slides mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
375 Control and Navigation with Knowledge Bases

Authors: Miloš Šeda, Tomáš Březina

Abstract:

In this paper, we focus on the use of knowledge bases in two different application areas – control of systems with unknown or strongly nonlinear models (i.e. hardly controllable by the classical methods), and robot motion planning in eight directions. The first one deals with fuzzy logic and the paper presents approaches for setting and aggregating the rules of a knowledge base. Te second one is concentrated on a case-based reasoning strategy for finding the path in a planar scene with obstacles.

Keywords: fuzzy controller, fuzzification, rule base, inference, defuzzification, genetic algorithm, neural network, case-based reasoning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
374 Comparison of Fundamental Frequency Model and PWM Based Model of UPFC

Authors: S.A. Al-Qallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.

Keywords: FACTS, UPFC, Dynamic Modeling, PWM, Fundamental Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
373 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.

Keywords: Beta Alloys, Biomedical Applications, Titanium Alloys, Young's Modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7717
372 Torsional Statics of Circular Nanostructures: Numerical Approach

Authors: M.Z. Islam, C.W. Lim

Abstract:

Based on the standard finite element method, a new finite element method which is known as nonlocal finite element method (NL-FEM) is numerically implemented in this article to study the nonlocal effects for solving 1D nonlocal elastic problem. An Eringen-type nonlocal elastic model is considered. In this model, the constitutive stress-strain law is expressed interms of integral equation which governs the nonlocal material behavior. The new NL-FEM is adopted in such a way that the postulated nonlocal elastic behavior of material is captured by a finite element endowed with a set of (cross-stiffness) element itself by the other elements in mesh. An example with their analytical solutions and the relevant numerical findings for various load and boundary conditions are presented and discussed in details. It is observed from the numerical solutions that the torsional deformation angle decreases with increasing nonlocal nanoscale parameter. It is also noted that the analytical solution fails to capture the nonlocal effect in some cases where numerical solutions handle those situation effectively which prove the reliability and effectiveness of numerical techniques.

Keywords: NL-FEM, nonlocal elasticity, nanoscale, torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
371 Effect of Including Thermal Process on Spot Welded and Weld-Bonded Joints

Authors: Essam A. Al-Bahkali

Abstract:

A three-dimensional finite element modeling for austenitic stainless steel AISI 304 annealed condition sheets of 1.0 mm thickness are developed using ABAQUS® software. This includes spot welded and weld bonded joints models. Both models undergo thermal heat caused by spot welding process and then are subjected to axial load up to the failure point. The properties of elastic and plastic regions, modulus of elasticity, fracture limit, nugget and heat affected zones are determined. Complete loaddisplacement curve for each joining model is obtained and compared with the experiment data and with the finite element models without including the effect of thermal process. In general, the results obtained for both spot welded and weld-bonded joints affected by thermal process showed an excellent agreement with the experimental data.

Keywords: Heat Affected Zone, Spot Welded, Thermal Process, Weld-Bonded.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
370 Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Keywords: Minerals, additive, flexural strength, compressive strength, modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
369 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method

Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam

Abstract:

Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.

Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
368 Optimal Criteria for Non-Minimal Phase Plants

Authors: Z. Nemec, R. Matousek

Abstract:

The paper describes the evaluation of quality of control for cases of controlled non-minimal phase plants. Control circuits containing non-minimal phase plants have different properties, they manifest reversed reaction at the beginning of unit step response. For these types of plants are developed special criterion of quality of control, which considers the difference and can be helpful for synthesis of optimal controller tuning. All results are clearly presented using Matlab/Simulink models.

Keywords: control design, non-minimal phase system, optimalcriteria, power plant, heating plant, water turbine, Matlab, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
367 A Variable Structure MRAC for a Class of MIMO Systems

Authors: Ardeshir Karami Mohammadi

Abstract:

A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.

Keywords: Adaptive control, Model reference, Variablestructure, MIMO system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
366 Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case

Authors: A. Selmi, A. Bisharat

Abstract:

Using Fourier transform and based on the Mindlin's 2nd gradient model that involves two length scale parameters, the Green's function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green's function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected.

Keywords: Eshelby tensor, Eshelby-like tensor, Green’s function, Mindlin’s 2nd gradient model, Spherical inclusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
365 Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites

Authors: Benalia Kouini, Aicha Serier

Abstract:

This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66, and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay. The results showed that the use of nanoclay affects the variations of storage modulus (G′), loss modulus (G″) and the melt elasticity.

Keywords: Nanocomposites, polypropylene, polyamide66, modified nanoclay, rheology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
364 Robust Position Control of an Electromechanical Actuator for Automotive Applications

Authors: Markus Reichhartinger, Martin Horn

Abstract:

In this paper, the position control of an electronic throttle actuator is outlined. The dynamic behavior of the actuator is described with the help of an uncertain plant model. This motivates the controller design based on the ideas of higher-order slidingmodes. As a consequence anti-chattering techniques can be omitted. It is shown that the same concept is applicable to estimate unmeasureable signals. The control law and the observer are implemented on an electronic control unit. Results achieved by numerical simulations and real world experiments are presented and discussed.

Keywords: higher order sliding-mode, throttle actuator, electromechanicalsystem, robust and nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
363 Design of Adaptive Controller Based On Lyapunov Stability for a CSTR

Authors: S. Anbu, N. Jaya

Abstract:

Nonlinearity is the inherent characteristics of all the industrial processes. The Classical control approach used for a generation often fails to show better results particularly for non-linear systems and in the systems, whose parameters changes over a period of time for a variety of reasons. Alternatively, adaptive control strategies provide very good performance. The Model Reference Adaptive Control based on Lyapunov stability analysis and classical PI control strategies are designed and evaluated for Continuous Stirred Tank Reactor, which shows appreciable dynamic nonlinear characteristics.

Keywords: Adaptive Control, CSTR, Lyapunov stability, MRAS, PID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4465