Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32759
Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.

Keywords: Beta Alloys, Biomedical Applications, Titanium Alloys, Young's Modulus.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094481

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7608

References:


[1] A Cremasco, WR Osorio, CMA Freire, et al., "Electrochemical corrosion behaviour of a Ti–35Nb alloy for medical prostheses", Electrochim Acta., Vol. 53, pp. 53:4867-4874, 2008.
[2] M Long., H.J Rack, "Titanium alloys in total joint replacement – a materials science perspective", Biomaterials, Vol. 19, pp. 1621–1639, 1998.
[3] K Wang, "The use of titanium for medical applications in the USA", Mater Sci. Eng. A, Vol. 213, pp. 213:134-137, 1996.
[4] C.J Boehlert, "Microstructure, creep, and tensile behavior of a Ti-12Al-38Nb (at.%) beta and orthorhombic alloy", Mater. Sci. Eng. A, Vol. 267, no. 1, pp. 82-98, 1999.
[5] M Niinomi, "Recent research and development in titanium alloys for biomedical applications and healthcare goods", Science and Technology of Advanced Materials, Vol. 4, pp. 445-454, 2003.
[6] R. Mythili, V. Thomas Paul, S. Saroja, et al., "Study of transformation behavior in Ti-4.4Ta-1.9Nb alloy", Mater. Sci. Eng. A., Vol. 390, pp. 299-312, 2005.
[7] M. Niinomi, "Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr", Biomaterials, Vol. 24, no. 16, pp. 2673-2683, 2003.
[8] J.Yu, Z.J.Zhao, L.X.Li, "Corrosion fatigue resistances of surgical implant stainless steel and titanium alloys", Corros. Sci., Vol. 35, pp. 587–597, 1993.
[9] Y. Okazaki, Y. Ito, K. Kyo, et al., "Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al" , Mater Sci Eng A Struct Mater., Vol. 213, pp. 138–147, 1996.
[10] M.Lkeda, S.Y. Komatsu, I. Sowa, et al., "Aging behavior of the Ti-29Nb-13Ta-4.6Zr new beta alloy for medical implants", Metall. Mater. Trans. A., Vol. 33, pp. 487-493, 2002.
[11] D.Sumner, J. Galante, "Determinants of stress shielding: design versus materials versus interface", Clin. Orthop. Relat. Res., Vol. 274, pp.202–212, 1992.
[12] B.Gasser, Design and Engineering Criteria for Titanium Devices, Titanium in Medicine, German: Springer, 2001.
[13] W. Ho, C. Ju, J. Chern Lin, "Structure and properties of cast binary Ti-Mo alloys", Biomaterials, Vol. 20, pp. 2115–2122, 1999.
[14] C.H. Park, J.W. Park, J.T .Yeom, et al., "Enhanced mechanical compatibility of submicrocrystalline Ti-13Nb-13Zr alloy", Mater. Sci. Eng. A, Vol. 527, no. (18-19), pp. 4914-4919, 2010.
[15] S. Nang, R. Banerjee, J. Stechschulte, et al., "Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys", J. Mater. Sci. Mater. Med., Vol. 16, no.(7), pp. 679-685, 2005.
[16] M. Niinomi, "Recent metallic materials for biomedical applications", Met Mater Trans, Vol. 33A, pp. 477–486, 2002.
[17] H. Ikehata, N. Nagasako, T. Furuta, et al., "First-principles calculations for development of low elastic modulus Ti alloys, Phys. Rev. Condens. Matter B, Vol. 70, pp. 174113-174118, 2004.
[18] M. Abdel-Hady, K. Hinoshitaa, M. Morinagaa, "General approach to phase stability and elastic properties of β-type Ti alloys using electronic parameters, Scr. Mater., Vol. 55, 477-480, 2006.
[19] J. Been, J.S.Grauman, "Titanium and Titanium Alloys, Uhlig,s Corrosion Handbook. 2nd ed. R.W. Revie New York, NY: John & Wiley, Inc.; 2000.
[20] M. Niinomi, "Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A., Vol. 243, 231-236, 1998.
[21] G. Yang and T. Zhang, "Phase transformation and mechanical properties of the Ti50Zr30Nb10Ta10 alloy with low modulus and biocompatible", J. Alloys Compd., Vol. 392, no. (1-2), pp. 291-294, 2005.
[22] J. Matthew, J. Donachie, Titanium A Technical Guide, 2nd edition, Ohio, USA: ASM International, Materials Park, 2000.
[23] P.J. Bania, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Titanium Alloys in the 1990’s, The Mineral, Metals & Materials Society, Warrendale, PA, 1993, pp. 3–14.
[24] R.W. Schutz, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Beta Titanium Alloys in the 1990’s, The Mineral, Metals & Materials Society, Warrendale, PA, 1993, pp. 75–91.
[25] K.L. Wapner, "Implications of metallic corrosion in total knee arthroplasty", Clin. Orthop. Relat. Res., Vol. 271, p.12-20, 1991.
[26] M.A. Khan, R.L. Williams, and D.F. Williams, "The Corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions", Biomaterials, Vol. 20, pp.631-637, 1999.
[27] D.M. Gordina, T. Glorianta, G. Nemtoib, "Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial", Mater. Lett., Vol. 59, pp.2959, 2005.
[28] S. Tamilselvi, V. Raman, and N. Rajendran, "Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy", Electrochim. Acta, Vol. 52, p.839, 2006.
[29] Y. Okazaki, Y. Ito, T. Tateishi, A. Ito, "Effect of heat treatment on microstructure and mechanical properties of new titanium alloys for surgical implantation", J 834 Jpn Inst Met, Vol. 59, pp.108–115, 1995.
[30] CRM. Afonso, GT. Aleixo, AJ. Ramirez, R. Caram, "Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants", Mater Sci Eng C, Vol.889, pp.908–913, 2007.
[31] LD. Zardiackas, DW. Mitchell, JA. Disegi, "Characterization of Ti–15Mo Beta Titanium Alloy for Orthopedic Implant", In: Brown SA, Lemons JE, editors, Medical applications of titanium and its alloys, ASTM STP 1272. West Conshohocken, PA: ASTM International, pp. 60–75, 1996.
[32] Xingfeng Zhao, M. Niinomi, Masaaki Nakai, Junko Hieda, "Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications, Acta Biomaterialia, Vol. 8, pp. 1990–1997, 2012.
[33] YL. Zhou and M. Niinomi, "Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys or bio- medical applications,” Materials Science and Engineering: C, Vol. 29, pp. 1061-1065, 2009.
[34] WF Ho, WK Chen, SC Wu, " Hsu HC. Structure, mechanical properties, and grindability of dental Ti–Zr alloys", J Mater Sci Mater Med, Vol. 19, pp.3179–86, 2008.
[35] Ikeda M, Ueda M, Matsunaga R, Ogawa M, Niinomi M.,"Isothermal aging behavior of beta titanium–manganese alloys", Mater Trans, Vol. 50, pp. 2737–43, 2009.
[36] M. Nakai, M. Niinomi, XF. Zhao, XL. Zhao, "Self-adjustment of Young’s modulus in biomedical titanium alloy during orthopaedic operation", Mater Lett 2, 2011.
[37] WF Ho, TY Chiang, SC Wu, HC Hsu, "Mechanical properties and deformation behavior of cast binary Ti–Cr alloys", J Alloy Compd, Vol.. 468, pp. 533–538, 2009.
[38] Y. Al-Zain, HY. Kim, H. Hosoda, TH. Nam, S. Miyazaki, "Shape memory properties of Ti–Nb–Mo biomedical alloys", Acta Mater, Vol.58, pp.4212–4223, 2010.
[39] D. Ping, Y. Mitarai, F. Yin, "Microstructure and shape memory behavior of a Ti– 30Nb–3Pd alloy", Scripta Mater, Vol.52, pp.1287–1291, 2005.
[40] AK Mishra, JA Davidson, RA Poggie, P Kovacs, TJ Fitzgerald, Mechanical and Tribological Properties and Biocompatibility of Diffusion Hardened Ti–13Nb–13Zr – A New Titanium Alloy for Surgical Implants, In: Brown SA, Lemons JE, editors. Medical Applications of Titanium and its Alloys, ASTM STP. West Conshohocken, PA: ASTM International; 1996. p. 96–116.
[41] M. Takahashi, E. Kobayashi, H. Doi, T. Yoneyama, H. Hamanaka. "Phase stability and mechanical properties of biomedical β-type titanium–zirconium based alloys containing niobium", J Jpn Inst Met Vol. 64, pp. 1120–6, 2000.
[42] Q. Li, M.. Niinomi, M.. Nakai, Z. Cui, S. Zhu, X. Yang, "Improvements in the super-elasticity and change in deformation mode of b-type TiNb24Zr2 alloys caused by aging treatments", Metall Mater Trans A, Vol.42, pp.2843–2849, 2011.
[43] L.W. Ma, H.S. Cheng, C.Y. Chung, "Effect of thermo-mechanical treatment on superelastic behavior of Ti-19Nb-14Zr (at%) shape memory alloy", Intermetallic, Vol. 32, pp. 44-50, 2013.
[44] K. Miura, N. Yamada, S. Hanada, TK. Jung, E. Itoi, "The bone tissue compatibility of a new Ti–Nb–Sn alloy with a low Young’s modulus", Acta Biomater, Vol.7, pp.2320–2326, 2011.
[45] H.Y. Kim, S. Hashimoto, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki, " Effect of Ta addition on shape memory behavior of Ti–22Nb alloy", Materials Science and Engineering A, Vol. 417, pp. 120–128, 2006.
[46] J. Málek, JF. Hnilica, J. Veselyˆ, B. Smola, S. Bartakova, J. Vanék, "The influence of chemical composition and thermo-mechanical treatment on Ti–Nb–Ta alloys", Mater Des, Vol.35, pp.731–740, 2012.
[47] Hsueh-Chuan Hsu, Shih-Kuang Hsu, Shih-Ching Wu, Chih-Jhan Leec, Wen-Fu Ho, " Structure and mechanical properties of as-cast Ti–5Nb–xFe alloys", Materials Characteristics, Vol. 61, pp. 851-858, 2010.
[48] DP. Cao, "Mechanical and electrochemical characterization of Ti–12Mo–5Zr alloy for biomedical application", J. Alloys Compd, Vol.509, pp.8235–8238, 2011.
[49] S.B. Gabriel, J.V.P. Panaino, I.D. Santos, L.S. Araujo, P.R. Mei, L.H. de Almeida, C.A. Nunes, " Characterization of a new beta titanium alloy, Ti–12Mo–3Nb, for biomedical applications", Journal of Alloys and Compounds, 2011.
[50] M. Ikeda, D. Sugano, "The effect of aluminum content on phase constitution and heat treatment behavior of Ti–Cr–Al alloys for healthcare applications", Mater Sci Eng C, Vol. 25, pp. 377–381, 2005.
[51] S. Hatanaka, M. Ueda, M. Ikeda, M. Niinomi, "Isothermal aging behavior in Ti–10Cr–Al alloys for medical applications", Adv Mater Res 2010;89–91:232–7.
[52] Ljerka Slokar, Tanja Matkovic´ , Prosper Matkovic´, "Alloy design and property evaluation of new Ti–Cr–Nb alloys", Materials and Design, Vol.33, pp.26–30, 2012.
[53] A. Wadood, T.Inamura, Y.Yamabe-Mitarai, H.Hosoda, "Strengthening of b Ti–6Cr–3Snalloythrough b grain refinement, a phase precipitation and resultin geffectsonshapememoryproperties", Materials Science & Engineering A, Vol. 559, pp. 829–835, 2013.
[54] Ikeda M, Ueda M, Matsunaga R, Niinomi M. Phase constitution and heat treatment behavior of Ti–7 mass %Mn–Al alloys. Mater Sci Forum 654– 656, pp. 855–858, 2010.
[55] E. Bertrand, T. Gloriant,_, D.M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, " Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy", J. mechanical behavior of biomedical materials, vol. 3, pp. 559-564, 2010.
[56] Y.X. Tong, B. Guo, Y.F. Zheng, C.Y. Chung, and L.W. Ma, " Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys", JMEPEG, Vol. 20, pp. 762–766, 2011.
[57] M. Ikeda, M. Ueda, T. Kinoshita, M. Ogawa, M. Niinomi, " Influence of Fe content of Ti–Mn–Fe alloys on phase constitution and heat treatment behavior", Mater Sci Forum, Vol. 706–709:1893–1898, 2012.
[58] S. Ashida, H. Kyogaku, H. Hosoda, "Fabrication of Ti–Sn–Cr shape memory alloy by PM and its properties", Mater Sci Forum, Vol. 706–709, pp. 1943–7, 2012.
[59] M. Ikeda, S. Komatsu, Y. Nakamura, "Effects of Sn and Zr additions on phase constitution and aging behavior of Ti–50 mass%Ta alloys quenched from β single phase region", Mater Trans, Vol. 45, pp. 1106–1112, 2004.
[60] YL. Hao, SJ. Li, SY. Sun, CY. Zheng, R. Yang, "Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications", Acta Biomater, Vol. 3, pp. 277–286, 2007.
[61] Z. Guo, J. Fu, YQ. Zhang, YY. Hu, ZG. Wu, L. Shi, M. Sha, SJ. Li, YL. Hao, R. Yang, "Early effect of Ti–24Nb–4Zr–7.9Sn intramedullary nails on fractured bone", Mater Sci Eng C, Vol.29, pp.963–968, 2009.
[62] WF. Cui, AH. Guo, "Microstructure and properties of biomedical TiNbZrFe β-titanium alloy under aging conditions", Mater Sci Eng A, Vol.527, pp.258–262, 2009.
[63] P. Majumdar, S.B. Singh, M. Chakraborty, " Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study", Materials Science and Engineering A, Vol. 489, pp. 419–425, 2008.
[64] Liqiang Wang, Weijie Lu, Jining Qin, Fan Zhang, Di Zhang , "Effect of precipitation phase on microstructure and superelasticity of cold-rolled beta titanium alloy during heat treatment", Materials and Design, Vol. 30, pp. 3873–3878, 2009.
[65] Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, D. Zhang, " Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy", Mater Des, Vol.32, pp.2934–2939, 2011.
[66] KK..Wang, LJ. Gustavson, JH. Dumbleton, "Microstructure and Properties of A New Beta Titanium Alloy, Ti–12Mo–6Zr–2Fe, Developed for Surgical Implants", In: Brown SA, Lemons JE, editors, Medical Applications of Titanium and its Alloys, ASTMSTP 1272.West Conshohocken, PA: ASTM International, pp.76–87, 1996.
[67] D. Kuroda, H. Kawasaki, S. Hiromoto, T. Hanawa, "Development of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys for biomedical applications", Mater Sci Eng C, Vol.25, pp.312–320, 2005.
[68] Y. Kasano, T. Inamura, H. Kanetaka, S. Miyazaki, H. Hosoda, "Phase constitution and mechanical properties of Ti–(Cr, Mn)–Sn biomedical alloys", Mater Sci Forum, Vol.654–656, pp.2118–2121, 2010.
[69] V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, M. Filonov, " Bulk and porous metastable beta Ti–Nb–Zr(Ta) alloys for biomedical applications", Materials science and Engineering C, Vol. 31, pp. 643-657, 2011.
[70] Q. Yao, H. Xing, W.Y. Guo, J. Sun, Rare Met. Mater. Eng. 38 (2009) 663–666.
[71] M. Niinomi, T. Hattori, T. Kasuga, H. Fukui, Titanium and Its Alloys, Encyclopedia of Biomaterials and Biomedical Engineering (New York, Marcel Dekker, 2006).
[72] P. Gill, N. Munroe C. Pulletikurthi, S. Pandya, and W. Haider, "Effect of Manufacturing Process on the Bio- compatibility and Mechanical Properties of Ti-30Ta Al- loy,” Journal of Materials Engineering and Performance, Vol. 20, No. 4, 2011, pp. 819-823.
[73] E. Bertrand, T. Gloriant, D.M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, " Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy", J. the mechanical behavior of biomedical materials, Vol. 3, pp. 559- 564, 2010.
[74] Hao YL, Li SJ, Sun SY, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of TieNb-based alloys. Mater Sci Eng A 2006;441:112e8.
[75] Hsueh-Chuan Hsu, Shih-Kuang Hsu, Shih-Ching Wu, Chih-Jhan Lee, Wen-Fu Ho, " Structure and mechanical properties of as-cast Ti–5Nb–xFe alloys", Materials Characteristics, Vol. 61, pp. 851-858, 2010.
[76] Changli Zhaoa, Xiaonong Zhanga, Peng Cao, Mechanical and Electrochemical Characterization of Ti–12Mo–5Zr Alloy for Biomedical Application, Journal of Alloys and Compounds, Vol. 509, pp.8235– 8238, 2011.
[77] M. Niinomi, Masaaki Nakai, Junko Hieda, "Development of new metallic alloys for biomedical applications", Acta Biomaterialia, 2012.
[78] M. Niinomi, "Fatigue performance and Cyto-toxicity of Low Rigidity Titanium Alloy, Ti–29Nb–13Ta–4.6Zr", Biomaterials, Vol. 24, pp.2673–2683, 2003.
[79] Shun Guo, Qingkun Meng, Guangyue Liao, Liang Hu, Xinqing Zhao, " Microstructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulus", Progress in Natural Science: Materials International, Vol. 23, pp. 174-182, 2013
[80] M. Tane S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, et al., "Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals", Acta Mater Vol. 56, pp.2856–6, 2008.
[81] CUI WenFang, GUO AiHong, ZHOU Lian & LIU ChunMing, "Crystal orientation dependence of Young’s modulus in Ti-Nb-based β-titanium alloy", Sci China Tech Sci., Vol. 53, pp. 1513-1519, 2010.
[82] R. Brånemark, B. Rydevik, R. Myers, P.-I. Brånemark, J. Rehabil. Res. Dev., Vol. 38 (2), pp. 175, 2001.
[83] W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Mater. Sci. Eng., A 362 (1–2), pp. 40., 2003
[84] R. Menini, M.-J. Dion, Siu Kee Vicky So, M. Gauthier, L.-Ph. Lefebvre, J. Electrochem. Soc., Vol. 153 (1), pp. 13, 2006.