Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30317
Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites

Authors: Benalia Kouini, Aicha Serier


This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66, and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay. The results showed that the use of nanoclay affects the variations of storage modulus (G′), loss modulus (G″) and the melt elasticity.

Keywords: Nanocomposites, Rheology, Polypropylene, polyamide66, modified nanoclay

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378


[1] Pavlidou, S., Papaspyrides, C.D., 2008. A review on polymer-layered silicate nanocomposites. Progr. Polym. Sci., 33 (12), 1119–1198.
[2] A.K. Barick, D.K. Tripathy, Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites, Applied Clay Science 52 (2011) 312– 321.
[3] LeBaron, P.C., Wang, Z., Pinnavaia, T.J., 1999. Polymer-layered silicate nanocomposites:an overview, Appl. Clay Sci. 15 (1–2), 11–29.
[4] R. Krishnamoorti, E. P. Giannelis, Macromolecules 1997, 30, 4097.
[5] K. M. Lee, C. D. Han, Macromolecules 2003, 36, 7165.
[6] R. Wagner, T. J. G. Reisinger, Polymer 2003, 44, 7513.
[7] J. Li, C. Zhou, G. Wang, W. Yu, Y. Tao, Q. Liu, Polym.Compos. 2003, 24, 323.
[8] K. J. Hoffmann, F. C. Stoppelmann, G. M. Kim, Colloid Polym. Sci. 2000, 278, 629.
[9] J. I. Sohn, C. H. Lee, S. T. Lim, T. H. Kim, H. J. Choi, M. S.John, J. Mater. Sci. 2003, 38, 1849.
[10] W. Feng, A. Ait-Kadi, B. Riedl, Macromol. Rapid Commun.2002, 23, 703.
[11] Benalia Kouini, Aicha Serier, Properties of polypropylene/polyamide nanocomposites prepared by meltprocessing with a PP-g-MAH compatibilizer, Materials and Design 34 (2012) 313–318.
[12] Benalia Kouini, Aicha Serier, Said Fellahi, The effect of organoclay and compatibilizer on the mechanical properties and morphology of injection-molded polyamiDe 66/polypropylene nanocomposites, Journal of Nanostructured Polymers and Nanocomposites – JNPN 5 (2009) 101- 106.
[13] Kouini, B., 2006. Synthesis and Characterization of PP-PPgMAH-PA66 Alloys Filled with Nanoclays, Master Thesis, Polymer Engineering Department IAP/SH.
[14] W. S. Chow, Z. A. MohdIshak, J. Karger-Kocsis, A. A. Apostolov, U. S. Ishiaku, Polymer 2003, 44, 7427.
[15] Kusmono., MohdIshak, Z. A., Chow, W. S., Takeichi, T., Rochmadi.,2008, Express Polymer Letters, 2(9), 655-664.
[16] Malwela, T., S. Sinha Ray., Unique morphology of dispersed clay particles in a polymer nanocomposite Polymer, 52, 1297-1301 (2011)
[17] Pegoretti, A., Dorigato, A., Penati, A., 2007, Express Polymer Letters, 1, 123-131.
[18] Dong, Y., D. Bhattacharyya, P.J. Hunter, Mapping the real micro/nanostructures for the prediction of elastic moduli of polypropylene/clay nanocomposites, Polymer,51, (2010) 816–824.
[19] Drosdov, A.D., E.A. Jensen, J. de C., Christiansen, Viscoelasticity of polyethylene/montmorillonite nanocomposite melts, Computational Materials Science, 43, (2008).
[20] Cassagnau, P., Melt rheology of organoclay and fumed silica nanocomposites, Polymer, 49, 2183-2196 (2008).
[21] Médéric, P., T. Aubry, T. Razafinimaro, Structural and rheological properties as a function of mixing energy for polymer/layered silicate nanocomposites, International Polymer Processing, 3, 261-266 (2009).
[22] Dykes, L. M. C., J. M. Torkelson, W. R. Burghardt, R. Krishnamoorti, Shear-induced orientation in polymer/clay dispersions via in situ X-ray scattering, Polymer, 51, 4916-4927 (2010).