Search results for: Thermal Diffusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1654

Search results for: Thermal Diffusion

1084 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
1083 Performance Evaluation of A Stratified Chilled- Water Thermal Storage System

Authors: M. A. Karim

Abstract:

In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.

Keywords: Cool Thermal Storage, Diffuser, Natural Stratification, Efficiency Improvement, Load management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3620
1082 Non Destructive Characterisation of Cement Mortar during Carbonation

Authors: Son Tung Pham, William Prince

Abstract:

The objective of this work was to examine the changes in non destructive properties caused by carbonation of CEM II mortar. Samples of CEM II mortar were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. We examined the evolutions of the gas permeability, the thermal conductivity, the thermal diffusivity, the volume of the solid phase by helium pycnometry, the longitudinal and transverse ultrasonic velocities. The principal contribution of this work is that, apart of the gas permeability, changes in other non destructive properties have never been studied during the carbonation of cement materials. These properties are important in predicting/measuring the durability of reinforced concrete in CO2 environment. The carbonation depth and the porosity accessible to water were also reported in order to explain comprehensively the changes in non destructive parameters.

Keywords: Carbonation, cement mortar, longitudinal and transverse ultrasonic velocities, non destructive tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
1081 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel

Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee

Abstract:

Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.

Keywords: Synthetic jets, microchannel, electronic cooling, computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
1080 Rheological Modeling for Production of High Quality Polymeric

Authors: H.Hosseini, A.A. Azemati

Abstract:

The fundamental defect inherent to the thermoforming technology is wall-thickness variation of the products due to inadequate thermal processing during production of polymer. A nonlinear viscoelastic rheological model is implemented for developing the process model. This model describes deformation process of a sheet in thermoforming process. Because of relaxation pause after plug-assist stage and also implementation of two stage thermoforming process have minor wall-thickness variation and consequently better mechanical properties of polymeric articles. For model validation, a comparative analysis of the theoretical and experimental data is presented.

Keywords: High-quality polymeric article, Thermal Processing, Rheological model, Minor wall-thickness variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
1079 Anti-microbial Activity of Aristolochic Acid from Root of Aristolochia bracteata Retz

Authors: S. Angalaparameswari, T.S. Mohamed Saleem, M. Alagusundaram, S. Ramkanth, V.S. Thiruvengadarajan, K. Gnanaprakash, C. Madhusudhana Chetty, G. Pratheesh

Abstract:

The present research was designed to investigate the anti-microbial activity of aristolochic acid from the root of Aristolochia bracteata. From the methanolic & ethyl extract extracts of Aristolochia bracteata aristolochic acid I was isolated and conformed through IR, NMR & MS. The percentage purity of aristolochic acid I was determined by UV & HPLC method. Antibacterial activity of extracts of Aristolochia bracteata and the isolated compound was determined by disc diffusion method. The results reveled that the isolated aristolochic acid from methanolic extract was more pure than the compound from ethyl acetate extract. The various extracts (500μg/disc) of Aristolochia bracteata showed moderate antibacterial activity with the average zone of inhibition of 7-18 mm by disc diffusion method. Among the extracts, ethyl acetate & methanol extracts were shown good anti-microbial activity and the growth of E.coli (18 mm) was strongly inhibited. Microbial assay of isolated compound (Aristolochic acid I) from ethyl acetate & methanol extracts were shown good antimicrobial activity and the zone of inhibition of both at higher concentration 50 μg/ml was similar with the standard aristolochic acid. It may be concluded that the isolated compound of aristolochic acid I has good anti-bacterial activity.

Keywords: Aristolochic acid I, Anti-microbial activity, Aristolochia bracteata, Bacillus subtilis, E.coli

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
1078 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
1077 Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts

Authors: Ayad A. Abdalla, Elhadi I. Elhadi, Hisham A. Elfergani

Abstract:

Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with Pr = 0.7 and a wide range of Grashof number (0 £ Gr £ 107). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = π/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.

Keywords: Mixed convection, annular and circular sector ducts, heat transfer enhancement, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
1076 Noninvasive Assessment of Low Power Laser Radiation Effect on Skin Wound Healing Using Infrared Thermography

Authors: M.A. Calin, S.V. Parasca, M.R. Calin, D. Savastru, D. Manea

Abstract:

The goal of this paper is to examine the effects of laser radiation on the skin wound healing using infrared thermography as non-invasive method for the monitoring of the skin temperature changes during laser treatment. Thirty Wistar rats were used in this study. A skin lesion was performed at the leg on all rats. The animals were exposed to laser radiation (λ = 670 nm, P = 15 mW, DP = 16.31 mW/cm2) for 600 s. Thermal images of wound were acquired before and after laser irradiation. The results have demonstrated that the tissue temperature decreases from 35.5±0.50°C in the first treatment day to 31.3±0.42°C after the third treatment day. This value is close to the normal value of the skin temperature and indicates the end of the skin repair process. In conclusion, the improvements in the wound healing following exposure to laser radiation have been revealed by infrared thermography.

Keywords: skin, wound, laser, thermal image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1075 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: Shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
1074 Numerical Investigation of Thermal-Hydraulic Performance of a Flat Tube in Cross-Flow of Air

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Heat transfer from flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube which is varied in range of 100 to 300. In these range of Reynolds number flow is considered to be laminar, unsteady, and incompressible. Equations are solved by using finite volume method. Results show that increasing l/D from 1 to 2 has insignificant effect on heat transfer and Nusselt number of flat tube is slightly lower than circular tube. However, thermal-hydraulic performance of flat tube is up to 2.7 times greater than circular tube.

Keywords: Laminar flow, flat tube, convective heat transfer, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
1073 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: Heating element, plugging, rotary heat exchanger, thermal fluid characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
1072 Investigation of Thermal and Mechanical Loading on Functional Graded Material Plates

Authors: Mine Uslu Uysal

Abstract:

This paper interested in the mechanical deformation behavior of shear deformable functionally graded ceramic-metal (FGM) plates. Theoretical formulations are based on power law theory when build up functional graded material. The mechanical properties of the plate are graded in the thickness direction according to a power-law Displacement and stress is obtained using finite element method (FEM). The load is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of thermo-mechanical deformation behavior. This thesis will explore analysis of FGM flat plates and shell panels, and their applications to r structural problems. FGMs are first characterized as flat plates under pressure in order to understand the effect variation of material properties has on structural response. In addition, results are compared to published results in order to show the accuracy of modeling FGMs using ABAQUS software.

Keywords: Functionally graded material, finite element method, thermal and structural loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3565
1071 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1070 Some Aspects Regarding I. R. Absorbing Materials Based On Thin Alumina Films for Solar-Thermal Energy Conversion, Using X-Ray Diffraction Technique

Authors: Sorina Adriana Mitrea, Silvia Maria Hodorogea, Anca Duta, Luminita Isac, Elena Purghel, Mihaela Voinea

Abstract:

Solar energy is the most “available", ecological and clean energy. This energy can be used in active or passive mode. The active mode implies the transformation of solar energy into a useful energy. The solar energy can be transformed into thermal energy, using solar collectors. In these collectors, the active and the most important element is the absorber, material which performs the absorption of solar radiation and, in at the same time, limits its reflection. The paper presents some aspects regarding the IR absorbing material – a type of cermets, used as absorber in the solar collectors, by X Ray Diffraction Technique (XRD) characterization.

Keywords: Alumina films, solar energy, X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
1069 Non-Destructive Visual-Statistical Approach to Detect Leaks in Water Mains

Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi

Abstract:

In this paper, an effective non-destructive, noninvasive approach for leak detection was proposed. The process relies on analyzing thermal images collected by an IR viewer device that captures thermo-grams. In this study a statistical analysis of the collected thermal images of the ground surface along the expected leak location followed by a visual inspection of the thermo-grams was performed in order to locate the leak. In order to verify the applicability of the proposed approach the predicted leak location from the developed approach was compared with the real leak location. The results showed that the expected leak location was successfully identified with an accuracy of more than 95%.

Keywords: Thermography, Leakage, Water pipelines, Thermograms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
1068 Characterization of the Airtightness Level in School Classrooms in Mediterranean Climate

Authors: Miguel A. Campano, Jesica Fernández-Agüera, Samuel Domínguez-Amarillo, Juan J. Sendra

Abstract:

An analysis of the air tightness level is performed on a representative sample of school classrooms in Southern Spain, which allows knowing the infiltration level of these classrooms, mainly through its envelope, which can affect both energy demand and occupant's thermal comfort. By using a pressurization/depressurization equipment (Blower-Door test), a characterization of 45 multipurpose classrooms have been performed in nine non-university educational institutions of the main climate zones of Southern Spain. In spite of having two doors and a high ratio between glass surface and outer surface, it is possible to see in these classrooms that there is an adequate level of airtightness, since all the n50 values obtained are lower than 9.0 ACH, with an average value around 7.0 ACH.

Keywords: Air infiltration, energy efficiency, school buildings, thermal comfort, indoor air quality, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
1067 Passive Cooling of Building by using Solar Chimney

Authors: Insaf Mehani, N. Settou

Abstract:

Natural ventilation is an important means to improve indoor thermal comfort and reduce the energy consumption. A solar chimney system is an enhancing natural draft device, which uses solar radiation to heat the air inside the chimney, thereby converting the thermal energy into kinetic energy. The present study considered some parameters such as chimney width and solar intensity, which were believed to have a significant effect on space ventilation. Fluent CFD software was used to predict buoyant air flow and flow rates in the cavities. The results were compared with available published experimental and theoretical data from the literature. There was an acceptable trend match between the present results and the published data for the room air change per hour, ACH. Further, it was noticed that the solar intensity has a more significant effect on ACH.

Keywords: Solar chimney, numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4409
1066 Development of Palm Kernel Shell Lightweight Masonry Mortar

Authors: Kazeem K. Adewole

Abstract:

There need to construct building walls with lightweight masonry bricks/blocks and mortar to reduce the weight and cost of cooling/heating of buildings in hot/cold climates is growing partly due to legislations on energy use and global warming. In this paper, the development of Palm Kernel Shell masonry mortar (PKSMM) prepared with Portland cement and crushed PKS fine aggregate (an agricultural waste) is demonstrated. We show that PKSMM can be used as a lightweight mortar for the construction of lightweight masonry walls with good thermal insulation efficiency than the natural river sand commonly used for masonry mortar production.

Keywords: Building walls, fine aggregate, lightweight masonry mortar, palm kernel shell, wall thermal insulation efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
1065 Transient Heat Transfer Model for Car Body Primer Curing

Authors: D. Zabala, N. Sánchez, J. Pinto

Abstract:

A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.

Keywords: Transient heat transfer, car body, lumpedcapacitance, primer baking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
1064 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

Authors: M. Ghobeiti-Hasab, Z. Shariati

Abstract:

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.

Keywords: Hard magnet, Sr-ferrite, Sol-gel auto-combustion, Nano-powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3726
1063 Extraction in Two-Phase Systems and Some Properties of Laccase from Lentinus polychrous

Authors: K. Ratanapongleka, J. Phetsom

Abstract:

Extraction of laccase produced by L. polychrous in an aqueous two-phase system, composed of polyethylene glycol and phosphate salt at pH 7.0 and 250C was investigated. The effect of PEG molecular weight, PEG concentration and phosphate concentration was determined. Laccase preferentially partitioned to the top phase. Good extraction of laccase to the top phase was observed with PEG 4000. The optimum system was found in the system containing 12% w/w PEG 4000 and 16% w/w phosphate salt with KE of 88.3, purification factor of 3.0-fold and 99.1% yield. Some properties of the enzyme such as thermal stability, effect of heavy metal ions and kinetic constants were also presented in this work. The thermal stability decreased sharply with high temperature above 60 0C. The enzyme was inhibited by Cd2+, Pb2+, Zn2+ and Cu2+. The Vmax and Km values of the enzyme were 74.70 μmol/min/ml and 9.066 mM respectively.

Keywords: Aqueous Two Phase System, Laccase, Lentinuspolychrous,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
1062 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: Energy Storage System, Heat Pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
1061 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: Mechanical measurement, nanomaterials, optical coating, thermal noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
1060 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
1059 The Effects of 2wt% Cu Addition on the Corrosion Behavior of Heat Treated Al-6Si-0.5Mg-2Ni Alloy

Authors: A. Hossain, M. A. Gafur, F. Gulshan, A. S. W. Kurny

Abstract:

Al-Si-Mg-Ni(-Cu) alloys are widely used in the automotive industry. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties – mainly at high temperatures. The corrosion resistance of these alloys in coastal area, particularly sea water, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization have been used to evaluate the corrosion resistance of Al-6Si-0.5Mg-2Ni (-2Cu) alloys in simulated sea water environments. The potentiodynamic polarization curves reveal that 2 wt% Cu content alloy (Alloy-2) is more prone to corrosion than the Cu free alloy (Alloy-1). But the EIS test results showed that corrosion resistance or charge transfer resistance (Rct) increases with the addition of Cu. Due to addition of Cu and thermal treatment, the magnitude of open circuit potential (OCP), corrosion potential (Ecorr) and pitting corrosion potential (Epit) of Al-6Si-0.5Mg-2Ni alloy in NaCl solution were shifted to the more noble direction.

Keywords: Al-Si alloy, potentiodynamic polarization, EIS, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
1058 Fabrication and Characterization of Sawdust Composite Biodegradable Film

Authors: M.Z. Norashikin, M.Z. Ibrahim

Abstract:

This report shows the performance of composite biodegradable film from chitosan, starch and sawdust fiber. The main objectives of this research are to fabricate and characterize composite biodegradable film in terms of morphology and physical properties. The film was prepared by casting method. Sawdust fiber was used as reinforcing agent and starch as polymer matrix in the casting solution. The morphology of the film was characterized using atomic force microscope (AFM). The result showed that the film has smooth structure. Chemical composition of the film was investigated using Fourier transform infrared (FTIR) where the result revealed present of starch in the film. The thermal properties were characterized using thermal gravimetric analyzer (TGA) and differential scanning calorimetric (DSC) where the results showed that the film has small difference in melting and degradation temperature.

Keywords: Sawdust, composite, film, biodegradable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605
1057 Experimental Performance and Numerical Simulation of Double Glass Wall

Authors: Thana Ananacha

Abstract:

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered as 400 and 800 W.m-2 the corresponding initial condition temperatures were 30.5 and 38.5ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Keywords: Thermal simulation, Double Glass Wall, Velocity field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
1056 Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.

Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29
1055 A Note on Significance of Solar Pond Technology for Power Generation

Authors: Donepudi Jagadish

Abstract:

In the view of current requirements of power generation and the increased interest on renewable energy sources, many options are available for generation of clean power. Solar power generation would be one of the best options in this context. The solar pond uses the principle of conversion of solar energy into heat energy, and also has the capability of storing this energy for certain period of time. The solar ponds could be best option for the regions with high solar radiation throughout the day, and also has free land availability. The paper depicts the significance of solar pond for conversion of solar energy into heat energy with a sight towards the parameters like thermal efficiency, working conditions and cost of construction. The simulation of solar pond system has been carried out for understanding the trends of the thermal efficiencies with respect to time.

Keywords: Renewable Energy, Solar Pond, Energy Efficiency, Construction of Solar Pond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3328