Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite
Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya
Abstract:
Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.
Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63References:
[1] A. U. Agobi, A. J. Ekpunobi, A. I. Ikeuba, and H. Louis, “The effects of graphene oxide load on the optical, structural and electrical properties of ternary nanocomposites (Polyvinyl alcohol/copper/graphene oxide) for electronic and photovoltaic application,” Results Opt., vol. 8, no. 2, pp. 1–9, 2022, doi: 10.1016/j.rio.2022.100261.
[2] K. Ibrahim, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, Nov. 2019, doi: 10.1016/j.arabjc.2017.05.011.
[3] Q. H. Tran, V. Q. Nguyen, and A.-T. Le, “Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 4, no. 3, pp. 1–21, May 2013, doi: 10.1088/2043-6262/4/3/033001.
[4] Y. Delgado, C. E. Martinez, M. Cortez, N. S. Flores, and M. Flores, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull., vol. 99, pp. 385–392, Mar. 2018, doi: 10.1016/j.materresbull.2017.11.015.
[5] M. S. G. Hamed, M. A. Adedeji, Y. Zhang, and G. T. Mola, “Silver sulphide nano-particles enhanced photo-current in polymer solar cells,” Appl. Phys. A Mater. Sci. Process., vol. 126, no. 3, pp. 1–207, Mar. 2020, doi: 10.1007/s00339-020-3389-8.
[6] P. Kumari, P. Chandran, and S. S. Khan, “Synthesis and characterization of silver sulfide nanoparticles for photocatalytic and antimicrobial applications,” J. Photochem. Photobiol. B Biol., vol. 141, pp. 235–240, Dec. 2014, doi: 10.1016/j.jphotobiol.2014.09.010.
[7] V. S. Shanthala, S. N. Shobha Devi, and M. V. Murugendrappa, “Synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites,” J. Asian Ceram. Soc., vol. 5, no. 3, pp. 227–234, Sep. 2017, doi: 10.1016/j.jascer.2017.02.005.
[8] R. Ohib, S. Y. Arnob, M. S. Ali, R. H. Sagor, and M. R. Amin, “Metal nanoparticle enhanced light absorption in GaAs thin-film solar cell,” in 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics, APACE 2016, 2016, pp. 89–93. doi: 10.1109/APACE.2016.7916482.
[9] T. A. Amollo, G. T. Mola, and V. O. Nyamori, “Organic solar cells: Materials and prospects of graphene for active and interfacial layers,” Crit. Rev. Solid State Mater. Sci., vol. 45, no. 4, pp. 261–288, 2020, doi: 10.1080/10408436.2019.1632791.
[10] A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,” Nano Mater. Sci., vol. 1, no. 1, pp. 31–47, Mar. 2019, doi: 10.1016/j.nanoms.2019.02.004.
[11] P. Zhang et al., “Fracture toughness of graphene,” Nat. Commun., vol. 5, pp. 1–7, 2014, doi: 10.1038/ncomms4782.
[12] F. Perrozzi, S. Prezioso, and L. Ottaviano, “Graphene oxide: from fundamentals to applications,” J. Phys. Condens. Matter, vol. 27, no. 1, pp. 1–22, Jan. 2015, doi: 10.1088/0953-8984/27/1/013002.
[13] T. A. Amollo, G. T. Mola, and V. O. Nyamori, “High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers,” Sol. Energy, vol. 171, no. 5, pp. 83–91, 2018, doi: 10.1016/j.solener.2018.06.068.
[14] A. Jiříčková, O. Jankovský, Z. Sofer, and D. Sedmidubský, “Synthesis and Applications of Graphene Oxide,” Materials (Basel)., vol. 15, no. 3, pp. 1–21, Jan. 2022, doi: 10.3390/ma15030920.
[15] T. A. Amollo, G. T. Mola, and V. O. Nyamori, “Polymer solar cells with reduced graphene oxide–germanium quantum dots nanocomposite in the hole transport layer,” J. Mater. Sci. Mater. Electron., vol. 29, no. 9, pp. 7820–7831, May 2018, doi: 10.1007/s10854-018-8781-1.
[16] N. Sharma et al., “Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application,” Macromol. Symp., vol. 376, no. 1, pp. 1–5, Dec. 2017, doi: 10.1002/masy.201700006.
[17] R. Yousefi and M. Cheraghizade, “Semiconductor/Graphene Nanocomposites: Synthesis, Characterization, and Applications,” in Applications of Nanomaterials, Elsevier, 2018, pp. 23–43. doi: 10.1016/B978-0-08-101971-9.00002-8.
[18] H.-R. Rahimi and M. Doostmohammadi, “Nanoparticle Synthesis, Applications, and Toxicity,” in Applications of Nanobiotechnology, IntechOpen, 2020, pp. 1–16. doi: 10.5772/intechopen.87973.
[19] M. A. Virji and A. B. Stefaniak, “A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 103–125. doi: 10.1016/B978-0-08-096532-1.00811-6.
[20] Z. Song et al., “Polymer−Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries,” Nano Lett., pp. 2205–2211, 2012.
[21] D. Lv et al., “GeO x /Reduced Graphene Oxide Composite as an Anode for Li-Ion Batteries: Enhanced Capacity via Reversible Utilization of Li 2 O along with Improved Rate Performance,” Adv. Funct. Mater., vol. 24, no. 8, pp. 1059–1066, Feb. 2014, doi: 10.1002/adfm.201301882.
[22] W. S. Hummers and R. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., vol. 80, no. 6, pp. 1339–1339, 1958.
[23] S. I. Sadovnikov and A. I. Gusev, “Recent progress in nanostructured silver sulfide: from synthesis and nonstoichiometry to properties,” J. Mater. Chem. A, vol. 5, no. 34, pp. 17676–17704, 2017, doi: 10.1039/C7TA04949H.
[24] O. C. Compton and S. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials,” Small, vol. 6, no. 6, pp. 711–723, Mar. 2010, doi: 10.1002/smll.200901934.
[25] S. Pan, X. Liu, and X. Wang, “Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity,” Mater. Charact., vol. 62, no. 11, pp. 1094–1101, 2011, doi: 10.1016/j.matchar.2011.08.004.
[26] H. Naeem et al., “Reduced Graphene Oxide-Zinc Sulfide Nanocomposite Decorated with Silver Nanoparticles for Wastewater Treatment by Adsorption, Photocatalysis and Antimicrobial Action,” Molecules, vol. 28, no. 3, pp. 1–19, Jan. 2023, doi: 10.3390/molecules28030926.
[27] Wiegers, “The crystal structure of the low-temperature form of silver selenide,” Am. Mineral., vol. 56, pp. 1882–1888, 1971.
[28] A. C. M. de Moraes, B. Araujo Lima, A. Fonseca de Faria, M. Brocchi, and O. Luiz Alves, “Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus,” Int. J. Nanomedicine, pp. 6847–6861, Nov. 2015, doi: 10.2147/IJN.S90660.
[29] S. Baskar, T. Lavanya, K. Subramani, and K. Satheesh, “Synthesis and characterization of reduced graphene oxide/Ag2S nanocomposites by co-precipitation method using thiourea as sulfur source and reducing agent,” Int. J. ChemTech Res., vol. 9, no. 5, pp. 395–401, 2016.
[30] G. A. Martínez, M. G. Sánchez-Loredo, H. J. Dorantes, J. R. Martínez, G. Ortega, and F. Ruiz, “Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method,” Mater. Lett., vol. 59, no. 4, pp. 529–534, Feb. 2005, doi: 10.1016/j.matlet.2004.10.043.
[31] S. I. Sadovnikov and A. I. Gusev, “Thermal expansion, heat capacity and phase transformations in nanocrystalline and coarse-crystalline silver sulfide at 290–970 K,” J. Therm. Anal. Calorim., vol. 131, no. 2, pp. 1155–1164, Feb. 2018, doi: 10.1007/s10973-017-6691-8.
[32] F. Farivar, P. Lay Yap, R. U. Karunagaran, and D. Losic, “Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters,” J. Carnon Res., vol. 7, no. 2, pp. 1–12, Apr. 2021, doi: 10.3390/c7020041.
[33] X.-Z. Tang et al., “Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose,” Carbon N. Y., vol. 59, pp. 93–99, Aug. 2013, doi: 10.1016/j.carbon.2013.02.058.
[34] M. H. Mahnashi, A. M. Mahmoud, S. A. Alkahtani, and M. M. El-Wekil, “Ivermectin detection using Ag@ B, S co-doped reduced graphene oxide nanohybrid,” J. Alloys Compd., vol. 871, pp. 1–8, Aug. 2021, doi: 10.1016/j.jallcom.2021.159627.
[35] T. Vi et al., “The Preparation of Graphene Oxide-Silver Nanocomposites: The Effect of Silver Loads on Gram-Positive and Gram-Negative Antibacterial Activities,” Nanomaterials, vol. 8, no. 3, pp. 1–15, Mar. 2018, doi: 10.3390/nano8030163.
[36] S. Gurunathan et al., “Reduced graphene oxide-silver nanoparticle nanocomposite: A potential anticancer nanotherapy,” Int. J. Nanomedicine, vol. 10, pp. 6257–6276, 2015, doi: 10.2147/IJN.S92449.
[37] H. Ahmad, H. S. Albaqawi, N. Yusoff, S. A. Reduan, and C. W. Yi, “Reduced Graphene Oxide-Silver Nanoparticles for Optical Pulse Generation in Ytterbium- and Erbium-Doped Fiber Lasers,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-66253-w.
[38] M. S. León, R. Irizarry, and M. E. Castro-Rosario, “Nucleation and Growth of Silver Sulfide Nanoparticles,” J. Phys. Chem. C, vol. 114, no. 13, pp. 5839–5849, Apr. 2010, doi: 10.1021/jp911238a.
[39] A. K. Suresh et al., “Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis,” Acta Biomater., vol. 7, no. 12, pp. 4253–4258, Dec. 2011, doi: 10.1016/j.actbio.2011.07.007.
[40] F. ullah Khan, S. Mahmood, Z. Ahmad, T. Mahmood, and Z. A. Nizami, “Graphene oxide synthesis by facile method and its characterization,” Open J. Chem., vol. 2, no. 1, pp. 11–15, 2019, doi: 10.30538/psrp-ojc2019.0008.
[41] D. Khalili, “Graphene oxide: a promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7,” New J. Chem., vol. 40, no. 3, pp. 2547–2553, 2016.
[42] Q. Zhao et al., “Synergistically improved electrochemical performance and its practical application of graphene oxide stabilized nano Ag2S by one-pot homogeneous precipitation,” Appl. Surf. Sci., vol. 501, pp. 1–8, Jan. 2020, doi: 10.1016/j.apsusc.2019.144208.
[43] A. Molla, Y. Li, B. Mandal, S. G. Kang, S. H. Hur, and J. S. Chung, “Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis,” Appl. Surf. Sci., vol. 464, pp. 170–177, Jan. 2019, doi: 10.1016/j.apsusc.2018.09.056.