Search results for: k-nearest neighbor.
84 Study of Compaction in Hot-Mix Asphalt Using Computer Simulations
Authors: Kasthurirangan Gopalakrishnan, Naga Shashidhar, Xiaoxiong Zhong
Abstract:
During the process of compaction in Hot-Mix Asphalt (HMA) mixtures, the distance between aggregate particles decreases as they come together and eliminate air-voids. By measuring the inter-particle distances in a cut-section of a HMA sample the degree of compaction can be estimated. For this, a calibration curve is generated by computer simulation technique when the gradation and asphalt content of the HMA mixture are known. A two-dimensional cross section of HMA specimen was simulated using the mixture design information (gradation, asphalt content and air-void content). Nearest neighbor distance methods such as Delaunay triangulation were used to study the changes in inter-particle distance and area distribution during the process of compaction in HMA. Such computer simulations would enable making several hundreds of repetitions in a short period of time without the necessity to compact and analyze laboratory specimens in order to obtain good statistics on the parameters defined. The distributions for the statistical parameters based on computer simulations showed similar trends as those of laboratory specimens.Keywords: Computer simulations, Hot-Mix Asphalt (HMA), inter-particle distance, image analysis, nearest neighbor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189283 Analysis of Genetic Variations in Camel Breeds (Camelus dromedarius)
Authors: Yasser M. Saad, Amr A. El Hanafy, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan
Abstract:
Camels are substantial providers of transport, milk, sport, meat, shelter, security and capital in many countries, particularly in Saudi Arabia. Inter simple sequence repeat technique was used to detect the genetic variations among some camel breeds (Majaheim, Safra, Wadah, and Hamara). Actual number of alleles, effective number of alleles, gene diversity, Shannon’s information index and polymorphic bands were calculated for each evaluated camel breed. Neighbor-joining tree that re-constructed for evaluated these camel breeds showed that, Hamara breed is distantly related from the other evaluated camels. In addition, the polymorphic sites, haplotypes and nucleotide diversity were identified for some camelidae cox1 gene sequences (obtained from NCBI). The distance value between C. bactrianus and C. dromedarius (0.072) was relatively low. Analysis of genetic diversity is an important way for conserving Camelus dromedarius genetic resources.
Keywords: Camel, genetics, ISSR, cox1, neighbor-joining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130882 Reducing SAGE Data Using Genetic Algorithms
Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang
Abstract:
Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161081 A Learning-Community Recommendation Approach for Web-Based Cooperative Learning
Authors: Jian-Wei Li, Yao-Tien Wang, Yi-Chun Chang
Abstract:
Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.
Keywords: k-nearest neighbor classification, learning community, Cooperative/Collaborative Learning and Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190580 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: Big data, k-NN, machine learning, traffic speed prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137779 Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods
Authors: Khaddouja Boujenfa, Nadia Essoussi, Mohamed Limam
Abstract:
Multiple sequence alignment is a fundamental part in many bioinformatics applications such as phylogenetic analysis. Many alignment methods have been proposed. Each method gives a different result for the same data set, and consequently generates a different phylogenetic tree. Hence, the chosen alignment method affects the resulting tree. However in the literature, there is no evaluation of multiple alignment methods based on the comparison of their phylogenetic trees. This work evaluates the following eight aligners: ClustalX, T-Coffee, SAGA, MUSCLE, MAFFT, DIALIGN, ProbCons and Align-m, based on their phylogenetic trees (test trees) produced on a given data set. The Neighbor-Joining method is used to estimate trees. Three criteria, namely, the dNNI, the dRF and the Id_Tree are established to test the ability of different alignment methods to produce closer test tree compared to the reference one (true tree). Results show that the method which produces the most accurate alignment gives the nearest test tree to the reference tree. MUSCLE outperforms all aligners with respect to the three criteria and for all datasets, performing particularly better when sequence identities are within 10-20%. It is followed by T-Coffee at lower sequence identity (<10%), Align-m at 20-30% identity, and ClustalX and ProbCons at 30-50% identity. Also, it is noticed that when sequence identities are higher (>30%), trees scores of all methods become similar.Keywords: Multiple alignment methods, phylogenetic trees, Neighbor-Joining method, Robinson-Foulds distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182778 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification
Authors: C. Gunavathi, K. Premalatha
Abstract:
Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.
Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454077 Hiding Data in Images Using PCP
Authors: Souvik Bhattacharyya, Gautam Sanyal
Abstract:
In recent years, everything is trending toward digitalization and with the rapid development of the Internet technologies, digital media needs to be transmitted conveniently over the network. Attacks, misuse or unauthorized access of information is of great concern today which makes the protection of documents through digital media a priority problem. This urges us to devise new data hiding techniques to protect and secure the data of vital significance. In this respect, steganography often comes to the fore as a tool for hiding information. Steganography is a process that involves hiding a message in an appropriate carrier like image or audio. It is of Greek origin and means "covered or hidden writing". The goal of steganography is covert communication. Here the carrier can be sent to a receiver without any one except the authenticated receiver only knows existence of the information. Considerable amount of work has been carried out by different researchers on steganography. In this work the authors propose a novel Steganographic method for hiding information within the spatial domain of the gray scale image. The proposed approach works by selecting the embedding pixels using some mathematical function and then finds the 8 neighborhood of the each selected pixel and map each bit of the secret message in each of the neighbor pixel coordinate position in a specified manner. Before embedding a checking has been done to find out whether the selected pixel or its neighbor lies at the boundary of the image or not. This solution is independent of the nature of the data to be hidden and produces a stego image with minimum degradation.Keywords: Cover Image, LSB, Pixel Coordinate Position (PCP), Stego Image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182176 Implementing a Visual Servoing System for Robot Controlling
Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari
Abstract:
Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167075 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection
Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary
Abstract:
Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.
Keywords: K-nearest neighbor, face detection, vitiligo, bone deformity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70174 Low Resolution Face Recognition Using Mixture of Experts
Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour
Abstract:
Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172473 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176872 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89871 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.
Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96070 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification
Authors: Nebi Gedik, Ayten Atasoy
Abstract:
This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.
Keywords: Breast cancer, wave atom transform, SVM, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107269 Analysis of Wi-Fi Access Networks Situation in the City Area
Authors: A. Statkus, S. Paulikas
Abstract:
With increasing number of wireless devices like laptops, Wi-Fi Web Cams, network extenders, etc., a new kind of problems appeared, mostly related to poor Wi-Fi throughput or communication problems. In this paper an investigation on wireless networks and it-s saturation in Vilnius City and its surrounding is presented, covering the main problems of wireless saturation and network load during day. Also an investigation on wireless channel selection and noise levels were made, showing the impact of neighbor AP to signal and noise levels and how it changes during the day.Keywords: IEEE 802.11b/g/n, wireless saturation, client activity, channel selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164868 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections
Authors: A. Sopharak, B. Uyyanonvara, S. Barman
Abstract:
Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.
Keywords: Diabetic retinopathy, microaneurysm, Naïve Bayes classifier, SVM classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610767 A Blind Digital Watermark in Hadamard Domain
Authors: Saeid Saryazdi, Hossein Nezamabadi-pour
Abstract:
A new blind gray-level watermarking scheme is described. In the proposed method, the host image is first divided into 4*4 non-overlapping blocks. For each block, two first AC coefficients of its Hadamard transform are then estimated using DC coefficients of its neighbor blocks. A gray-level watermark is then added into estimated values. Since embedding watermark does not change the DC coefficients, watermark extracting could be done by estimating AC coefficients and comparing them with their actual values. Several experiments are made and results suggest the robustness of the proposed algorithm.
Keywords: Digital Watermarking, Image watermarking, Information Hiden, Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226466 Hybrid Model Based on Artificial Immune System and Cellular Automata
Authors: Ramin Javadzadeh, Zahra Afsahi, MohammadReza Meybodi
Abstract:
The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.Keywords: Artificial Immune System, Cellular Automat, neighborhood
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160365 A Method for Quality Inspection of Motors by Detecting Abnormal Sound
Authors: Tadatsugu Kitamoto
Abstract:
Recently, a quality of motors is inspected by human ears. In this paper, I propose two systems using a method of speech recognition for automation of the inspection. The first system is based on a method of linear processing which uses K-means and Nearest Neighbor method, and the second is based on a method of non-linear processing which uses neural networks. I used motor sounds in these systems, and I successfully recognize 86.67% of motor sounds in the linear processing system and 97.78% in the non-linear processing system.Keywords: Acoustical diagnosis, Neural networks, K-means, Short-time Fourier transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170164 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm
Authors: Essam Al Daoud
Abstract:
This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.Keywords: Least squares, neighbor joining, phylogenetic tree, wild dogpack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139363 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.
Keywords: Brain balancing, kNN, power spectral density, 3D EEG model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263062 Fuzzy Based Visual Texture Feature for Psoriasis Image Analysis
Authors: G. Murugeswari, A. Suruliandi
Abstract:
This paper proposes a rotational invariant texture feature based on the roughness property of the image for psoriasis image analysis. In this work, we have applied this feature for image classification and segmentation. The fuzzy concept is employed to overcome the imprecision of roughness. Since the psoriasis lesion is modeled by a rough surface, the feature is extended for calculating the Psoriasis Area Severity Index value. For classification and segmentation, the Nearest Neighbor algorithm is applied. We have obtained promising results for identifying affected lesions by using the roughness index and severity level estimation.
Keywords: Fuzzy texture feature, psoriasis, roughness feature, skin disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211661 Weighted k-Nearest-Neighbor Techniques for High Throughput Screening Data
Authors: Kozak K, M. Kozak, K. Stapor
Abstract:
The k-nearest neighbors (knn) is a simple but effective method of classification. In this paper we present an extended version of this technique for chemical compounds used in High Throughput Screening, where the distances of the nearest neighbors can be taken into account. Our algorithm uses kernel weight functions as guidance for the process of defining activity in screening data. Proposed kernel weight function aims to combine properties of graphical structure and molecule descriptors of screening compounds. We apply the modified knn method on several experimental data from biological screens. The experimental results confirm the effectiveness of the proposed method.
Keywords: biological screening, kernel methods, KNN, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227660 Topological Properties of an Exponential Random Geometric Graph Process
Authors: Yilun Shang
Abstract:
In this paper we consider a one-dimensional random geometric graph process with the inter-nodal gaps evolving according to an exponential AR(1) process. The transition probability matrix and stationary distribution are derived for the Markov chains concerning connectivity and the number of components. We analyze the algorithm for hitting time regarding disconnectivity. In addition to dynamical properties, we also study topological properties for static snapshots. We obtain the degree distributions as well as asymptotic precise bounds and strong law of large numbers for connectivity threshold distance and the largest nearest neighbor distance amongst others. Both exact results and limit theorems are provided in this paper.Keywords: random geometric graph, autoregressive process, degree, connectivity, Markovian, wireless network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145859 Smart Grids Cyber Security Issues and Challenges
Authors: Imen Aouini, Lamia Ben Azzouz
Abstract:
The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.Keywords: Smart grids, smart meters, home area network, neighbor area network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394958 Reversible Watermarking for H.264/AVC Videos
Authors: Yih-Chuan Lin, Jung-Hong Li
Abstract:
In this paper, we propose a reversible watermarking scheme based on histogram shifting (HS) to embed watermark bits into the H.264/AVC standard videos by modifying the last nonzero level in the context adaptive variable length coding (CAVLC) domain. The proposed method collects all of the last nonzero coefficients (or called last level coefficient) of 4×4 sub-macro blocks in a macro block and utilizes predictions for the current last level from the neighbor block-s last levels to embed watermark bits. The feature of the proposed method is low computational and has the ability of reversible recovery. The experimental results have demonstrated that our proposed scheme has acceptable degradation on video quality and output bit-rate for most test videos.Keywords: Reversible data hiding, H.264/AVC standard, CAVLC, Histogram shifting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203157 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13756 Evaluation of Classifiers Based On I2C Distance for Action Recognition
Authors: Lei Zhang, Tao Wang, Xiantong Zhen
Abstract:
Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.
Keywords: Instance-to-class distance, NBNN, Local NBNN, NBNN kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166055 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: Classification, data mining, evaluation measures, groundwater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595