**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31824

##### Topological Properties of an Exponential Random Geometric Graph Process

**Authors:**
Yilun Shang

**Abstract:**

**Keywords:**
random geometric graph,
autoregressive process,
degree,
connectivity,
Markovian,
wireless network.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1062986

**References:**

[1] Y. C. Cheng and T. Robertazzi, Critical connectivity phenomena in multihop radio models. IEEE Trans. on Commun., 37(1989) 770-777.

[2] F. Chung, S. Handjani and D. Jungreis, Generalizations of Polya-s urn problem. Annals of Combinatorics, 7(2003) 141-153.

[3] S. Cs┬¿org╦Øo and W.-B. Wu, On the clustering of independent uniform random variables. Random Structures and Algorithms, 25(2004) 396-420.

[4] J. D'─▒az, D. Mitsche and X. P'erez-Gim'enez, On the connectivity of dynamic random geometric graphs. Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 2008, 601-610.

[5] O. Dousse, P. Thiran and M. Hasler, Connectivity in ad hoc and hybrid networks. Proc. of IEEE Infocom, New York, 2002, 1079-1088.

[6] E. Godehardt and J. Jaworski, On the conncetivity of a random interval graph. Random Structures and Algorithms, 9 (1996) 137-161.

[7] B. Gupta, S. K. Iyer and D. Manjunath, Topological properties of the one dimensional exponential random geometric graph. Random Structures and Algorithms, 32(2008) 181-204.

[8] S. K. Iyer and D. Manjunath, Topological properties of random wireless networks. S┬»adhan┬»a, 31(2006) 117-139.

[9] K. K. Jose and R. N. Pillai, Geometric infinite divisiblility and its applications in autoregressive time series modeling. In: V. Thankaraj (Ed.)Stochastic Process and its Applications, Wiley Eastern, New Delhi, 1995.

[10] N. Karamchandani, D. Manjunath and S. K. Iyer, On the clustering properties of exponential random networks. IEEE Proc. of 6th WoWMoM, 2005, 177-182.

[11] N. Karamchandani, D. Manjunath, D. Yogeshwaran and S. K. Iyer, Evolving random geometric graph models for mobile wireless networks. IEEE Proc. of the 4th WiOpt, Boston, 2006, 1-7.

[12] V. Kurlin, L. Mihaylova and S. Maskell, How many randomly distributed wireless sensors are enough to make a 1-dimensional network connected with a given probability? Technical Report, arXiv:0710.1001v1

[cs.IT].

[13] A. J. Lawrance and P. A. W. Lewis, A new autoregressive time series model in exponential variables (NEAR(1)). Advances in Applied Probability, 13(1981) 826-845.

[14] D. Miorandi and E. Altman, Connectivity in one-dimensional ad hoc networks: A queueing theoretical approach. Wireless Networks, 12(2006) 573-587.

[15] S. Muthukrishnan and G. Pandurangan, The bin-covering technique for thresholding random geometric graph properties. Proc. of 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, 2005, 989- 998.

[16] M. D. Penrose, Random Geometric Graphs, Oxford University Press, 2003.

[17] S. M. Ross, Introduction to Probability Models. Academic Press, 2006.

[18] V. Seetha Lekshmi and K. K. Jose, Autoregressive processes with Pakes and geometric Pakes generalized Linnik marginals. Statist. Probab. Lett., 76(2006) 318-326.

[19] E. Seneta, Non-negative Matrices and Markov Chains. Springer-Verlag, 1981.

[20] Y. Shang, Exponential random geometric graph process models for mobile wireless networks. International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Zhangjiajie, 2009, 56- 61.

[21] Y. Shang, Connectivity in a random interval graph with access points. Information Processing Letters, 109(2009), 446-449.

[22] Y. Shang, On the degree sequence of random geometric digraphs. Applied Mathematical Sciences, 4(2010) 2001-2012.

[23] Y. Shang, Laws of large numbers of subgraphs in directed random geometric networks. International Electronic Journal of Pure and Applied Mathematics, 2(2010) 69-79.