Search results for: fractal method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8128

Search results for: fractal method

8098 Dual Band Fractal Antenna for Wireless Sensor Network Application

Authors: M. Shanmugapriya, M. A. Maluk Mohamed, J. William

Abstract:

A wireless sensor network (WSN) is a collection of sensor nodes organized into a cooperative network. These nodes communicate through a wireless antenna. Reduction in physical size and multiband operation is an important requirement of WSN antenna. Fractal antenna is used for miniaturization and multiband operation. The self-similar or self-affine and space filling property of fractal geometry increases the effective electrical length of the antenna, reduces the size and make them frequency independent. This paper elaborates on Dual band fractal antenna with Coplanar Waveguide (CPW) feed for WSN. The proposed antenna is designed on a FR4 substrate with the dimension of 27mm x 28.5mm x 1.6mm, resonates at 2.4GHz and 5.2GHz with a return loss less than -10dB. The design and simulation process is carried out using IE3D simulation software. The simulated and measured results are found in good agreement.

Keywords: CPW, Fractal, Iterations, Miniaturization, Space filling, Self Similar, WSN, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
8097 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
8096 Arriving at an Optimum Value of Tolerance Factor for Compressing Medical Images

Authors: Sumathi Poobal, G. Ravindran

Abstract:

Medical imaging uses the advantage of digital technology in imaging and teleradiology. In teleradiology systems large amount of data is acquired, stored and transmitted. A major technology that may help to solve the problems associated with the massive data storage and data transfer capacity is data compression and decompression. There are many methods of image compression available. They are classified as lossless and lossy compression methods. In lossy compression method the decompressed image contains some distortion. Fractal image compression (FIC) is a lossy compression method. In fractal image compression an image is coded as a set of contractive transformations in a complete metric space. The set of contractive transformations is guaranteed to produce an approximation to the original image. In this paper FIC is achieved by PIFS using quadtree partitioning. PIFS is applied on different images like , Ultrasound, CT Scan, Angiogram, X-ray, Mammograms. In each modality approximately twenty images are considered and the average values of compression ratio and PSNR values are arrived. In this method of fractal encoding, the parameter, tolerance factor Tmax, is varied from 1 to 10, keeping the other standard parameters constant. For all modalities of images the compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the decompressed image is arrived by PSNR values. From the results it is observed that the compression ratio increases with the tolerance factor and mammogram has the highest compression ratio. The quality of the image is not degraded upto an optimum value of tolerance factor, Tmax, equal to 8, because of the properties of fractal compression.

Keywords: Fractal image compression, IFS, PIFS, PSNR, Quadtree partitioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
8095 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan Lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
8094 Labyrinth Fractal on a Convex Quadrilateral

Authors: Harsha Gopalakrishnan, Srijanani Anurag Prasad

Abstract:

Quadrilateral Labyrinth Fractals are a type of fractals presented in this paper. They belong to a unique class of fractals on any plane quadrilateral. The previously researched labyrinth fractals on the unit square and triangle inspire this form of fractal. This work describes how to construct a quadrilateral labyrinth fractal and looks at the circumstances in which it can be understood as the attractor of an iterated function system. Furthermore, some of its topological properties and the Hausdorff and box-counting dimensions of the quadrilateral labyrinth fractals are studied.

Keywords: Fractals, labyrinth fractals, dendrites, iterated function system, non-self similar, non-self affine, connected, path connected.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79
8093 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: Segmentation, color-texture, neural networks, fractal, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
8092 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface

Authors: Srijanani Anurag Prasad

Abstract:

The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprise a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.

Keywords: Fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
8091 Fractal Analysis of 16S rRNA Gene Sequences in Archaea Thermophiles

Authors: T. Holden, G. Tremberger, Jr, E. Cheung, R. Subramaniam, R. Sullivan, N. Gadura, P. Schneider, P. Marchese, A. Flamholz, T. Cheung, D. Lieberman

Abstract:

A nucleotide sequence can be expressed as a numerical sequence when each nucleotide is assigned its proton number. A resulting gene numerical sequence can be investigated for its fractal dimension in terms of evolution and chemical properties for comparative studies. We have investigated such nucleotide fluctuation in the 16S rRNA gene of archaea thermophiles. The studied archaea thermophiles were archaeoglobus fulgidus, methanothermobacter thermautotrophicus, methanocaldococcus jannaschii, pyrococcus horikoshii, and thermoplasma acidophilum. The studied five archaea-euryarchaeota thermophiles have fractal dimension values ranging from 1.93 to 1.97. Computer simulation shows that random sequences would have an average of about 2 with a standard deviation about 0.015. The fractal dimension was found to correlate (negative correlation) with the thermophile-s optimal growth temperature with R2 value of 0.90 (N =5). The inclusion of two aracheae-crenarchaeota thermophiles reduces the R2 value to 0.66 (N = 7). Further inclusion of two bacterial thermophiles reduces the R2 value to 0.50 (N =9). The fractal dimension is correlated (positive) to the sequence GC content with an R2 value of 0.89 for the five archaea-euryarchaeota thermophiles (and 0.74 for the entire set of N = 9), although computer simulation shows little correlation. The highest correlation (positive) was found to be between the fractal dimension and di-nucleotide Shannon entropy. However Shannon entropy and sequence GC content were observed to correlate with optimal growth temperature having an R2 of 0.8 (negative), and 0.88 (positive), respectively, for the entire set of 9 thermophiles; thus the correlation lacks species specificity. Together with another correlation study of bacterial radiation dosage with RecA repair gene sequence fractal dimension, it is postulated that fractal dimension analysis is a sensitive tool for studying the relationship between genotype and phenotype among closely related sequences.

Keywords: Fractal dimension, archaea thermophiles, Shannon entropy, GC content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
8090 Evaluation of Ultrasonic C-Scan Images by Fractal Dimension

Authors: S. Samanta, D. Datta, S. S. Gautam

Abstract:

In this paper, quantitative evaluation of ultrasonic Cscan images through estimation of their Fractal Dimension (FD) is discussed. Necessary algorithm for evaluation of FD of any 2-D digitized image is implemented by developing a computer code. For the evaluation purpose several C-scan images of the Kevlar composite impacted by high speed bullet and glass fibre composite having flaw in the form of inclusion is used. This analysis automatically differentiates a C-scan image showing distinct damage zone, from an image that contains no such damage.

Keywords: C-scan, Impact, Fractal Dimension, Kevlar composite and Inclusion Flaw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
8089 Design of Laboratory Pilot Reactor for Filtering and Separation of Water – oil Emulsions

Authors: Irena Markovska, Nikolai Zaicev, Bogdan Bogdanov, Dimitar Georgiev, Yancho Hristov

Abstract:

The present paper deals with problems related to the possibilities to use fractal systems to solve some important scientific and practical problems connected with filtering and separation of aqueous phases from organic ones. For this purpose a special separator have been designed. The reactor was filled with a porous material with fractal dimension, which is an integral part of the set for filtration and separation of emulsions. As a model emulsion hexadecan mixture with water in equal quantities (1:1) was used. We examined the hydrodynamics of the separation of the emulsion at different rates of submission of the entrance of the reactor.

Keywords: pilot reactor, fractal systems, separation, emulsions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
8088 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications

Authors: C. Elavarasi, T. Shanmuganantham

Abstract:

A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.

Keywords: Monopole antenna, fractal, metamaterial, waterlily shape, split ring resonator, multiband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
8087 Simulation Design of Separator for the Treatment of Emulsions

Authors: Irena Markovska, Dimitar Rusev, Nikolai Zaicev, Bogdan Bogdanov, Dimitar Georgiev, Yancho Hristov

Abstract:

A prototype model of an emulsion separator was designed and manufactured. Generally, it is a cylinder filled with different fractal modules. The emulsion was fed into the reactor by a peristaltic pump through an inlet placed at the boundary between the two phases. For hydrodynamic design and sizing of the reactor the assumptions of the theory of filtration were used and methods to describe the separation process were developed. Based on this methodology and using numerical methods and software of Autodesk the process is simulated in different operating modes. The basic hydrodynamic characteristics - speed and performance for different types of fractal systems and decisions to optimize the design of the reactor were also defined.

Keywords: fractal systems, reactor, separation, emulsions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
8086 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method

Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani

Abstract:

In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.

Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488
8085 A Methodological Test to Study the Concrete Workability with the Fractal Model

Authors: F. Achouri, K. Chouicha

Abstract:

The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim of this study is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability. To develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G/S, the quantity of cement C and the quantity of water W. We also call another model as the model of water layer thickness and model of paste layer thickness to judge their relevance, hence the following results: the relevance of the water layer thickness model is considered as a relevant when there is a variation in the water quantity. The model of the paste layer thickness is only applicable if we considered that the paste is made with the grain value Dmax = 2.85: value from which we see a stability of the model.

Keywords: Concrete, fractal method, paste layer thickness, water layer thickness, workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
8084 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
8083 The Effects of TiO2 Nanoparticles on Tumor Cell Colonies: Fractal Dimension and Morphological Properties

Authors: T. Sungkaworn, W. Triampo, P. Nalakarn, D. Triampo, I. M. Tang, Y. Lenbury, P. Picha

Abstract:

Semiconductor nanomaterials like TiO2 nanoparticles (TiO2-NPs) approximately less than 100 nm in diameter have become a new generation of advanced materials due to their novel and interesting optical, dielectric, and photo-catalytic properties. With the increasing use of NPs in commerce, to date few studies have investigated the toxicological and environmental effects of NPs. Motivated by the importance of TiO2-NPs that may contribute to the cancer research field especially from the treatment prospective together with the fractal analysis technique, we have investigated the effect of TiO2-NPs on colony morphology in the dark condition using fractal dimension as a key morphological characterization parameter. The aim of this work is mainly to investigate the cytotoxic effects of TiO2-NPs in the dark on the growth of human cervical carcinoma (HeLa) cell colonies from morphological aspect. The in vitro studies were carried out together with the image processing technique and fractal analysis. It was found that, these colonies were abnormal in shape and size. Moreover, the size of the control colonies appeared to be larger than those of the treated group. The mean Df +/- SEM of the colonies in untreated cultures was 1.085±0.019, N= 25, while that of the cultures treated with TiO2-NPs was 1.287±0.045. It was found that the circularity of the control group (0.401±0.071) is higher than that of the treated group (0.103±0.042). The same tendency was found in the diameter parameters which are 1161.30±219.56 μm and 852.28±206.50 μm for the control and treated group respectively. Possible explanation of the results was discussed, though more works need to be done in terms of the for mechanism aspects. Finally, our results indicate that fractal dimension can serve as a useful feature, by itself or in conjunction with other shape features, in the classification of cancer colonies.

Keywords: Tumor growth, Cell colonies, TiO2, Nanoparticles, Fractal, Morphology, Aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
8082 Online Optic Disk Segmentation Using Fractals

Authors: Srinivasan Aruchamy, Partha Bhattacharjee, Goutam Sanyal

Abstract:

Optic disk segmentation plays a key role in the mass screening of individuals with diabetic retinopathy and glaucoma ailments. An efficient hardware-based algorithm for optic disk localization and segmentation would aid for developing an automated retinal image analysis system for real time applications. Herein, TMS320C6416DSK DSP board pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk is reported. The experiment has been performed on color and fluorescent angiography retinal fundus images. Initially, the images were pre-processed to reduce the noise and enhance the quality. The retinal vascular tree of the image was then extracted using canny edge detection technique. Finally, a pixel intensity based fractal analysis is performed to segment the optic disk by tracing the origin of the vascular tree. The proposed method is examined on three publicly available data sets of the retinal image and also with the data set obtained from an eye clinic. The average accuracy achieved is 96.2%. To the best of the knowledge, this is the first work reporting the use of TMS320C6416DSK DSP board and pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk. This will pave the way for developing devices for detection of retinal diseases in the future.

Keywords: Color retinal fundus images, Diabetic retinopathy, Fluorescein angiography retinal fundus images, Fractal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513
8081 Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities

Authors: Sumathi Poobal, G. Ravindran

Abstract:

Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.

Keywords: DCT, FIC, PIFS, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
8080 The Effect of Directional Search Using Iterated Functional System for Matching Range and Domain Blocks

Authors: Shimal Das, Dibyendu Ghoshal

Abstract:

The effect of directional search using iterated functional system has been studied on four images taken from databases. The images are portioned successively towards smaller dimension. Presented method provides the faster rate of convergence with respect to processing time in the flat region, but the same has been found to be slower at the border of the images and edges. It has also been revealed that the PSNR is lower at the edges and border portions of the image, and it is found to be higher in the uniform gray region, under the same external illumination and external noise environment.

Keywords: Iterated functional system, fractal compression, structural similarity index measure, fractal block coding, affine transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
8079 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP

Authors: S. Boonpoke, B. Marungsri

Abstract:

This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.

Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
8078 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
8077 Offline Signature Recognition using Radon Transform

Authors: M.Radmehr, S.M.Anisheh, I.Yousefian

Abstract:

In this work a new offline signature recognition system based on Radon Transform, Fractal Dimension (FD) and Support Vector Machine (SVM) is presented. In the first step, projections of original signatures along four specified directions have been performed using radon transform. Then, FDs of four obtained vectors are calculated to construct a feature vector for each signature. These vectors are then fed into SVM classifier for recognition of signatures. In order to evaluate the effectiveness of the system several experiments are carried out. Offline signature database from signature verification competition (SVC) 2004 is used during all of the tests. Experimental result indicates that the proposed method achieved high accuracy rate in signature recognition.

Keywords: Fractal Dimension, Offline Signature Recognition, Radon Transform, Support Vector Machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
8076 Parameter Estimation for Viewing Rank Distribution of Video-on-Demand

Authors: Hyoup-Sang Yoon

Abstract:

Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.

Keywords: VOD, CDN, parabolic fractal distribution, viewing rank, weighted linear model fitting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
8075 Box Counting Dimension of the Union L of Trinomial Curves When α ≥ 1

Authors: Kaoutar Lamrini Uahabi, Mohamed Atounti

Abstract:

In the present work, we consider one category of curves denoted by L(p, k, r, n). These curves are continuous arcs which are trajectories of roots of the trinomial equation zn = αzk + (1 − α), where z is a complex number, n and k are two integers such that 1 ≤ k ≤ n − 1 and α is a real parameter greater than 1. Denoting by L the union of all trinomial curves L(p, k, r, n) and using the box counting dimension as fractal dimension, we will prove that the dimension of L is equal to 3/2.

Keywords: Feasible angles, fractal dimension, Minkowski sausage, trinomial curves, trinomial equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
8074 Stochastic Modeling and Combined Spatial Pattern Analysis of Epidemic Spreading

Authors: S. Chadsuthi, W. Triampo, C. Modchang, P. Kanthang, D. Triampo, N. Nuttavut

Abstract:

We present analysis of spatial patterns of generic disease spread simulated by a stochastic long-range correlation SIR model, where individuals can be infected at long distance in a power law distribution. We integrated various tools, namely perimeter, circularity, fractal dimension, and aggregation index to characterize and investigate spatial pattern formations. Our primary goal was to understand for a given model of interest which tool has an advantage over the other and to what extent. We found that perimeter and circularity give information only for a case of strong correlation– while the fractal dimension and aggregation index exhibit the growth rule of pattern formation, depending on the degree of the correlation exponent (β). The aggregation index method used as an alternative method to describe the degree of pathogenic ratio (α). This study may provide a useful approach to characterize and analyze the pattern formation of epidemic spreading

Keywords: spatial pattern epidemics, aggregation index, fractaldimension, stochastic, long-rang epidemics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
8073 Behavior of Solutions of the System of Recurrence Equations Based on the Verhulst-Pearl Model

Authors: Vladislav N. Dumachev, Vladimir A. Rodin

Abstract:

By utilizing the system of the recurrence equations, containing two parameters, the dynamics of two antagonistically interconnected populations is studied. The following areas of the system behavior are detected: the area of the stable solutions, the area of cyclic solutions occurrence, the area of the accidental change of trajectories of solutions, and the area of chaos and fractal phenomena. The new two-dimensional diagram of the dynamics of the solutions change (the fractal cabbage) has been obtained. In the cross-section of this diagram for one of the equations the well-known Feigenbaum tree of doubling has been noted.Keywordsbifurcation, chaos, dynamics of populations, fractals

Keywords: bifurcation, chaos, dynamics of populations, fractals

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
8072 Frequency-Domain Design of Fractional-Order FIR Differentiators

Authors: Wei-Der Chang, Dai-Ming Chang, Eri-Wei Chiang, Chia-Hung Lin, Jian-Liung Chen

Abstract:

In this paper, a fractional-order FIR differentiator design method using the differential evolution (DE) algorithm is presented. In the proposed method, the FIR digital filter is designed to meet the frequency response of a desired fractal-order differentiator, which is evaluated in the frequency domain. To verify the design performance, another design method considered in the time-domain is also provided. Simulation results reveal the efficiency of the proposed method.

Keywords: Fractional-order differentiator, FIR digital filter, Differential evolution algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
8071 Signature Identification Scheme Based on Iterated Function Systems

Authors: Nadia M. G. AL-Saidi

Abstract:

Since 1984 many schemes have been proposed for digital signature protocol, among them those that based on discrete log and factorizations. However a new identification scheme based on iterated function (IFS) systems are proposed and proved to be more efficient. In this study the proposed identification scheme is transformed into a digital signature scheme by using a one way hash function. It is a generalization of the GQ signature schemes. The attractor of the IFS is used to obtain public key from a private one, and in the encryption and decryption of a hash function. Our aim is to provide techniques and tools which may be useful towards developing cryptographic protocols. Comparisons between the proposed scheme and fractal digital signature scheme based on RSA setting, as well as, with the conventional Guillou-Quisquater signature, and RSA signature schemes is performed to prove that, the proposed scheme is efficient and with high performance.

Keywords: Digital signature, Fractal, Iterated function systems(IFS), Guillou-Quisquater (GQ) protocol, Zero-knowledge (ZK)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
8070 Recursive Similarity Hashing of Fractal Geometry

Authors: Timothee G. Leleu

Abstract:

A new technique of topological multi-scale analysis is introduced. By performing a clustering recursively to build a hierarchy, and analyzing the co-scale and intra-scale similarities, an Iterated Function System can be extracted from any data set. The study of fractals shows that this method is efficient to extract self-similarities, and can find elegant solutions the inverse problem of building fractals. The theoretical aspects and practical implementations are discussed, together with examples of analyses of simple fractals.

Keywords: hierarchical clustering, multi-scale analysis, Similarity hashing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
8069 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons

Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia

Abstract:

Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.

Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558