Search results for: Volterra integral equation
1424 Multiple Positive Periodic Solutions of a Competitor-Competitor-Mutualist Lotka-Volterra System with Harvesting Terms
Authors: Yongkun Li, Erliang Xu
Abstract:
In this paper, by using Mawhin-s continuation theorem of coincidence degree theory, we establish the existence of multiple positive periodic solutions of a competitor-competitor-mutualist Lotka-Volterra system with harvesting terms. Finally, an example is given to illustrate our results.
Keywords: Positive periodic solutions, competitor-competitor mutualist Lotka-Volterra systems, coincidence degree, harvesting term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13541423 Existence of Multiple Positive Periodic Solutions to n Species Nonautonomous Lotka-Volterra Cooperative Systems with Harvesting Terms
Authors: Kaihong Zhao
Abstract:
In this paper, the existence of 2n positive periodic solutions for n species non-autonomous Lotka-Volterra cooperative systems with harvesting terms is established by using Mawhin-s continuation theorem of coincidence degree theory and matrix inequality. An example is given to illustrate the effectiveness of our results.
Keywords: Multiple positive periodic solutions, Nonautonomous Lotka-Volterra cooperative system, Coincidence degree, Harvesting term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13391422 Basket Option Pricing under Jump Diffusion Models
Authors: Ali Safdari-Vaighani
Abstract:
Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.Keywords: Radial basis function, basket option, jump diffusion, RBF-PUM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12101421 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
Authors: Aziz Sezgin
Abstract:
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16801420 An Asymptotic Formula for Pricing an American Exchange Option
Authors: Hsuan-Ku Liu
Abstract:
In this paper, the American exchange option (AEO) valuation problem is modelled as a free boundary problem. The critical stock price for an AEO is satisfied an integral equation implicitly. When the remaining time is large enough, an asymptotic formula is provided for pricing an AEO. The numerical results reveal that our asymptotic pricing formula is robust and accurate for the long-term AEO.
Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161419 Almost Periodicity in a Harvesting Lotka-Volterra Recurrent Neural Networks with Time-Varying Delays
Authors: Yongzhi Liao
Abstract:
By using the theory of exponential dichotomy and Banach fixed point theorem, this paper is concerned with the problem of the existence and uniqueness of positive almost periodic solution in a delayed Lotka-Volterra recurrent neural networks with harvesting terms. To a certain extent, our work in this paper corrects some result in recent years. Finally, an example is given to illustrate the feasibility and effectiveness of the main result.
Keywords: positive almost periodic solution, Lotka-Volterra, neural networks, Banach fixed point theorem, harvesting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271418 Contact Problem for an Elastic Layered Composite Resting on Rigid Flat Supports
Authors: T. S. Ozsahin, V. Kahya, A. Birinci, A. O. Cakiroglu
Abstract:
In this study, the contact problem of a layered composite which consists of two materials with different elastic constants and heights resting on two rigid flat supports with sharp edges is considered. The effect of gravity is neglected. While friction between the layers is taken into account, it is assumed that there is no friction between the supports and the layered composite so that only compressive tractions can be transmitted across the interface. The layered composite is subjected to a uniform clamping pressure over a finite portion of its top surface. The problem is reduced to a singular integral equation in which the contact pressure is the unknown function. The singular integral equation is evaluated numerically and the results for various dimensionless quantities are presented in graphical forms.Keywords: Frictionless contact, Layered composite, Singularintegral equation, The theory of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15861417 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations
Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol
Abstract:
This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.
Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9811416 High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method
Authors: Pan Cheng, Jin Huang, Guang Zeng
Abstract:
Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.Keywords: boundary integral equation, extrapolation algorithm, aposteriori error estimate, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36481415 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space
Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi
Abstract:
This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.
Keywords: Transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16771414 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind
Authors: jianhua Hou, Changqing Yang, and Beibo Qin
Abstract:
A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.
Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14031413 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31921412 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type
Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long
Abstract:
This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.
Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621411 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation
Authors: Z. El Felsoufi, L. Azrar
Abstract:
This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.
Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211410 Study on the Evaluation of the Chaotic Cipher System Using the Improved Volterra Filters and the RBFN Mapping
Authors: Hirotaka Watanabe, Takaaki Kondo, Daiki Yoshida, Ariyoshi Nakayama, Taichi Sato, Shuhei Kuriyama, Hiroyuki Kamata
Abstract:
In this paper, we propose a chaotic cipher system consisting of Improved Volterra Filters and the mapping that is created from the actual voice by using Radial Basis Function Network. In order to achieve a practical system, the system supposes to use the digital communication line, such as the Internet, to maintain the parameter matching between the transmitter and receiver sides. Therefore, in order to withstand the attack from outside, it is necessary that complicate the internal state and improve the sensitivity coefficient. In this paper, we validate the robustness of proposed method from three perspectives of "Chaotic properties", "Randomness", "Coefficient sensitivity".
Keywords: Chaos cipher, 16-bit-length fixed point arithmetic, Volterra filter, Seacret communications, RBF Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18221409 On Fourier Type Integral Transform for a Class of Generalized Quotients
Authors: A. S. Issa, S. K. Q. AL-Omari
Abstract:
In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.Keywords: Fourier type integral, Fourier integral, generalized quotient, Boehmian, distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11821408 Frictionless Contact Problem Between Two Orthotropic Elastic Layers
Authors: V. Kahya, A. Birinci, R. Erdol
Abstract:
A frictionless contact problem for a two-layer orthotropic elastic medium loaded through a rigid flat stamp is considered. It is assumed that tensile tractions are not allowed and only compressive tractions can be transmitted across the interface. In the solution, effect of gravity is taken into consideration. If the external load on the rigid stamp is less than or equal to a critical value, continuous contact between the layers is maintained. The problem is expressed in terms of a singular integral equation by using the theory of elasticity and the Fourier transforms. Numerical results for initial separation point, critical separation load and contact stress distribution are presented.Keywords: Frictionless contact, Initial separation, Orthotropicmaterial, Singular integral equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141407 Application of a Fracture-Mechanics Approach to Gas Pipelines
Authors: Ľubomír Gajdoš, Martin Šperl
Abstract:
This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29521406 Ruin Probability for a Markovian Risk Model with Two-type Claims
Authors: Dongdong Zhang, Deran Zhang
Abstract:
In this paper, a Markovian risk model with two-type claims is considered. In such a risk model, the occurrences of the two type claims are described by two point processes {Ni(t), t ¸ 0}, i = 1, 2, where {Ni(t), t ¸ 0} is the number of jumps during the interval (0, t] for the Markov jump process {Xi(t), t ¸ 0} . The ruin probability ª(u) of a company facing such a risk model is mainly discussed. An integral equation satisfied by the ruin probability ª(u) is obtained and the bounds for the convergence rate of the ruin probability ª(u) are given by using key-renewal theorem.
Keywords: Risk model, ruin probability, Markov jump process, integral equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13671405 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder in the Absence of Buoyancy Forces
Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo
Abstract:
In this paper, growth and collapse of a vapour bubble generated due to a local energy input inside a rigid cylinder and in the absence of buoyancy forces is investigated using Boundary Integral Equation Method and Finite Difference Method .The fluid is treated as potential flow and Boundary Integral Equation Method is used to solve Laplace-s equation for velocity potential. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method, Finite difference method, Buoyancy forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771404 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation
Authors: Xin Luo, Jin Huang, Chuan-Long Wang
Abstract:
The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.
Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661403 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method
Authors: Changqing Yang, Jianhua Hou
Abstract:
In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.
Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16731402 Blow up in Polynomial Differential Equations
Authors: Rudolf Csikja, Janos Toth
Abstract:
Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.
Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861401 Asymptotic Approach for Rectangular Microstrip Patch antenna With Magnetic Anisotropy and Chiral Substrate
Authors: Zebiri Chemseddine, Benabdelaziz Fatiha
Abstract:
The effect of a chiral bianisotropic substrate on the complex resonant frequency of a rectangular microstrip resonator has been studied on the basis of the integral equation formulation. The analysis is based on numerical resolution of the integral equation using Galerkin procedure for moment method in the spectral domain. This work aim first to study the effect of the chirality of a bianisotopic substrate upon the resonant frequency and the half power bandwidth, second the effect of a magnetic anisotropy via an asymptotic approach for very weak substrate upon the resonant frequency and the half power bandwidth has been investigated. The obtained results are compared with previously published work [11-9], they were in good agreement.Keywords: Microstrip antenna, bianisotropic media, resonant frequency, moment method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16041400 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues
Authors: MA. Ansari
Abstract:
In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.Keywords: Diffusion equation, boundary element method, refractive index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20191399 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation
Authors: N. Parandin, M. A. Fariborzi Araghi
Abstract:
in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14141398 Integral Image-Based Differential Filters
Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama
Abstract:
We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.
Keywords: Integral images, differential images, differential filters, image fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21041397 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t
Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim
Abstract:
Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.
Keywords: Pell equation, Diophantine equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24011396 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem
Authors: Xin Luo, Jin Huang, Pan Cheng
Abstract:
By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.
Keywords: Stokes problem, boundary integral equation, mechanical quadrature methods, asymptotic expansions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981395 Efficient Mean Shift Clustering Using Exponential Integral Kernels
Authors: S. Sutor, R. Röhr, G. Pujolle, R. Reda
Abstract:
This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.
Keywords: Clustering, Integral Images, Kernels, Person Detection, Person Tracking, Intelligent Video Surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531