**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30075

##### On Fourier Type Integral Transform for a Class of Generalized Quotients

**Authors:**
A. S. Issa,
S. K. Q. AL-Omari

**Abstract:**

**Keywords:**
Fourier type integral,
Fourier integral,
generalized
quotient,
Boehmian,
distribution.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1125119

**References:**

[1] V. K. Tuan and M. Saigo (1995), Convolution of Hankel transform and its application to an integral involving Bessel functions of first kind. Internat. J. Math. Math. Sci. 18(3), 545-550.

[2] N. Xuan Thao, V. K. Tuan and N. Minh Khoa (2004), A generalized convolution with a weight function for the Fourier cosine and sine Transformations, Fract. Cal.appl. Anal. 7(3), 323-337.

[3] K. N. Minh, V. A. Kakichev and V. K. (1998), Tuan. On the generalized convolution for Fourier cosine and sine transforms. East-West J. Math. 1(1) 85-90

[4] H. J. Glaeske and V. K. Tuan (1995), Some applications of the convolution theorem of the Hilbert transform. Integral Transforms and Special Functions 3(4) , 263-268.

[5] H. M. Srivastava and V. K. Tuan (1995), A new convolution theorem for the Stieltjes transform and its application to a class of singular integral equations. Arch. Math. 64(2) ,144-149.

[6] S. K. Q. Al-Omari and A. Kilicman (2012), On diffraction Fresnel transforms for Boehmians, Abstract and Applied Analysis, Volume 2011, Article ID 712746.

[7] S. K. Q. Al-Omari and Kilicman, A. (2013), An estimate of Sumudu transform for Boehmians, Advances in Difference Equations 2013, 2013:77.

[8] S. K. Q. Al-Omari (2013), Hartley transforms on certain space of generalized functions, Georg. Math. J. 20(3), 415-426.

[9] R. S. Pathak (1997). Integral transforms of generalized functions and their applications, Gordon and Breach Science Publishers, Australia , Canada, India, Japan.

[10] S. K. Q. Al-Omari (2014) ; Some characteristics of S transforms in a class of rapidly decreasing Boehmians, Journal of Pseudo-Differential Operators and Applications 01/2014; 5(4):527-537. DOI:10.1007/s11868-014-0102-8.

[11] N. Sundararajan and Y. Srinivas (2010) , Fourier-Hilbert versus Hartley-Hilbert transforms with some geophysical applications, Journal of Applied Geophysics 71,157-161.

[12] S. K. Q. Al-Omari and A. Kilicman (2012). Note on Boehmians for class of optical Fresnel wavelet transforms, Journal of Function Spaces and Applications, Volume 2012, Article ID 405368, doi:10.1155/2012/405368.

[13] S. K. Q. Al-Omari and A. Kilicman (2012) , On generalized Hartley-Hilbert and Fourier-Hilbert transforms, Advances in Difference Equations 2012, 2012:232 doi:10.1186/1687-1847-2012-232.

[14] S. K. Q. Al-Omari (2015), On a class of generalized Meijer-Laplace transforms of Fox function type kernels and their extension to a class of Boehmians. Georg. Math. J. To appear .

[15] S. K. Q. Al-Omari and Adam Kilicman (2013), Unified treatment of the Kratzel transformation for generalized functions, Abstract and Applied Analysis Volume 2013, Article ID 750524,1-6.

[16] V. Karunakaran and C. Ganesan (2009), Fourier transform on integrable Boehmians, Integral Transforms Spec. Funct. 20 , 937–941.

[17] D. Nemzer (2009), A note on multipliers for integrable Boehmians, Fract. Calc.Appl. Anal., 12 , 87–96.

[18] V. Karunakaran and C. Prasanna Devi (2010), The Laplace transform on a Boehmian space, Ann. Polon. Math., 97 , 151–157.

[19] C. Ganesan (2010), Weighted ultra distributions and Boehmians, Int. Journal of Math. Analysis, 4 (15), 703–712.