Search results for: Second critical rotor speed
2832 Causes of Rotor Distortions and Applicable Common Straightening Methods for Turbine Rotors and Shafts
Authors: Esmaeil Poursaeidi, Mostafa Kamalzadeh Yazdi
Abstract:
Different problems may causes distortion of the rotor, and hence vibration, which is the most severe damage of the turbine rotors. In many years different techniques have been developed for the straightening of bent rotors. The method for straightening can be selected according to initial information from preliminary inspections and tests such as nondestructive tests, chemical analysis, run out tests and also a knowledge of the shaft material. This article covers the various causes of excessive bends and then some applicable common straightening methods are reviewed. Finally, hot spotting is opted for a particular bent rotor. A 325 MW steam turbine rotor is modeled and finite element analyses are arranged to investigate this straightening process. Results of experimental data show that performing the exact hot spot straightening process reduced the bending of the rotor significantly.Keywords: Distortion, FEM, Hot Spot Area, Rotor Straightening
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65212831 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings
Authors: Abdurrahim Dal, Tuncay Karaçay
Abstract:
Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.Keywords: Air bearing, internal pressure, Reynold’s equation, rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21392830 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Antonio Vitale, Nicola Genito, Giovanni Cuciniello, Ferdinando Montemari
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.
Keywords: Flapping Dynamics, Flight Dynamics, System Identification, Tilt-Rotor Modeling and Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12902829 Aeroelasticity Analysis of Rotor Blades in the First Two Stages of Axial Compressor in the Case of a Bird Strike
Authors: R. Rzadkowski, V. Gnesin, M. Drewczyński, R. Szczepanik
Abstract:
A bird strike can cause damage to stationary and rotating aircraft engine parts, especially the engine fan. This paper presents a bird strike simulated by blocking four stator blade passages. It includes the numerical results of the unsteady lowfrequency aerodynamic forces and the aeroelastic behaviour caused by a non-symmetric upstream flow affecting the first two rotor blade stages in the axial-compressor of a jet engine. The obtained results show that disturbances in the engine inlet strongly influence the level of unsteady forces acting on the rotor blades. With a partially blocked inlet the whole spectrum of low-frequency harmonics is observed. Such harmonics can lead to rotor blade damage. The lowfrequency amplitudes are higher in the first stage rotor blades than in the second stage. In both rotor blades stages flutter appeared as a result of bird strike.Keywords: Flutter, unsteady forces, rotor blades.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24752828 Turbine Speed Variation Study in Gas Power Plant for an Active Generator
Authors: R. Kazemzadeh, J. M. Kauffmann
Abstract:
This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.Keywords: Power Generation, Energy Conversion, FrequencyControl, Matrix Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19022827 Determination of Stress Concentration Factors of a Steam Turbine Rotor by FEA
Authors: R. Nagendra Babu, K. V. Ramana, K. Mallikarjuna Rao
Abstract:
Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors. A model of Steam Turbine Rotor is shown in Fig. 1.Keywords: Stress Concentration Factors, Finite Element Analysis, and ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32672826 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor
Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.
Keywords: Permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14312825 Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena
Authors: Jafar Abbaszadeh Chekan, Kaveh Merat, Hassan Zohoor
Abstract:
In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.
Keywords: Stability analysis, Rotor-rolling bearing systems, Switching systems, Multiple Lyapunov Function Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17452824 Analysis of SEIG for a Wind Pumping Plant Using Induction Motor
Authors: A. Abbou, H. Mahmoudi, M. Akherraz
Abstract:
In contrast to conventional generators, self-excited induction generators are found to be most suitable machines for wind energy conversion in remote and windy areas due to many advantages over grid connected machines. This papers presents a Self-Excited Induction Generator (SEIG) driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state performance based on nodal analysis is presented. Therefore the advanced knowledge of the minimum excitation capacitor value is required. The effects of variation of excitation capacitance on system and rotor speed under different loading conditions have been analyzed and considered to optimize induction motor pump performances.
Keywords: SEIG, Induction Motor, Centrifugal Pump, capacitance requirements, wind rotor speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23172823 Novel Design and Analysis of a Brake Rotor
Authors: Sharath Kumar T., S.Vinodh
Abstract:
Over the course of the past century, the global automotive industry-s stance towards safety has evolved from one of contempt to one nearing reverence. A suspension system that provides safe handling and cornering capabilities can, with the help of an efficient braking system, improve safety to a large extent. The aim of this research is to propose a new automotive brake rotor design and to compare it with automotive vented disk rotor. Static structural and transient thermal analysis have been carried out on the vented disk rotor and proposed rotor designs to evaluate and compare their performance. Finite element analysis was employed for both static structural and transient thermal analysis. Structural analysis was carried out to study the stress and deformation pattern of the rotors under extreme loads. Time varying temperature load was applied on the rotors and the temperature distribution was analysed considering cooling parameters (convection and radiation). This dissertation illustrates the use of Finite Element Methods to examine models, concluding with a comparative study of the proposed rotor design and the conventional vented disk rotor for structural stability and thermal efficiency.Keywords: Disk brakes, CAD model, rotor design, structural and thermal analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32852822 Nonlinear Large Deformation Analysis of Rotor
Authors: Amin Almasi
Abstract:
Reliability assessment and risk analysis of rotating machine rotors in various overload and malfunction situations present challenge to engineers and operators. In this paper a new analytical method for evaluation of rotor under large deformation is addressed. Model is presented in general form to include also composite rotors. Presented simulation procedure is based on variational work method and has capability to account for geometric nonlinearity, large displacement, nonlinear support effect and rotor contacting other machine components. New shape functions are presented which capable to predict accurate nonlinear profile of rotor. The closed form solutions for various operating and malfunction situations are expressed. Analytical simulation results are discussedKeywords: Large Deformation, Nonlinear, Rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13602821 Theoretical Investigations on Different Casing and Rotor Diameters Ratio to Optimize Shaft Output of a Vaned Type Air Turbine
Authors: Bharat Raj Singh, Onkar Singh
Abstract:
This paper details a new concept of using compressed air as a potential zero pollution power source for motorbikes. In place of an internal combustion engine, the motorbike is equipped with an air turbine transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor diameters, casing diameters and ratio of rotor to casing diameters of the turbine have been considered and analyzed. It is concluded that the work output is found optimum for some typical values of rotor / casing diameter ratios. In this study, the maximum power works out to 3.825 kW (5.20 HP) for casing diameter of 200 mm and rotor to casing diameter ratio of 0.65 to 0.60 which is sufficient to run motorbike.
Keywords: zero pollution, compressed air, air turbine, injectionangle, rotor / casing diameter ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622820 States Estimation and Fault Detection of a Doubly Fed Induction Machine by Moving Horizon Estimation
Authors: A. T. Boum, L. Bitjoka, N. N. Léandre, S. Bennet
Abstract:
This paper presents the estimation of the key parameters of a double fed induction machine (DFIM) by the use of the moving horizon estimator (MHE) for control and monitoring purpose. A study was conducted on the behavior of this observer in the presence of some faults which can occur during the operation of the machine. In the first case a stator phase has been suppressed. In the second case the rotor resistance has been multiplied by a factor. The results show a good estimation of different parameters such as rotor flux, rotor speed, stator current with a very small estimation error. The robustness of the observer was also tested in the practical case of DFIM by using another model different from the real one at a constant close. The very small estimation error makes the MHE a good software sensor candidate for monitoring purpose for the DFIM.
Keywords: Doubly fed induction machine, moving horizon estimator parameters’ estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7712819 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor
Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher
Abstract:
The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.
Keywords: Efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9262818 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study
Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho
Abstract:
The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16882817 Starting Torque Study of Darrieus Wind Turbine
Authors: M. Douak, Z. Aouachria
Abstract:
The aim of our study is to project an optimized wind turbine of Darrieus type. This type of wind turbine is characterized by a low starting torque in comparison with the Savonius rotor allowing them to operate for a period greater than wind speed. This led us to reconsider the Darrieus rotor to optimize a design which will increase its starting torque. The study of a system of monitoring and control of the angle of attack of blade profile, which allows an auto start to wind speeds as low as possible is presented for the straight blade of Darrieus turbine. The study continues to extend to other configurations namely those of parabolic type.
Keywords: Darrieus turbine, pitch angle, self-stating, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46692816 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives
Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam
Abstract:
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14602815 Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.Keywords: DOIG, Iterative separation, Integral manifolds, Reduced order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12632814 Effect of Rotor to Casing Ratios with Different Rotor Vanes on Performance of Shaft Output of a Vane Type Novel Air Turbine
Authors: Bharat Raj Singh, Onkar Singh
Abstract:
This paper deals with new concept of using compressed atmospheric air as a zero pollution power source for running motorbikes. The motorbike is equipped with an air turbine in place of an internal combustion engine, and transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor to casing diameter ratios with respect to different vane angles (number of vanes) have been considered and analyzed. It is found that the shaft work output is optimum for some typical values of rotor / casing diameter ratios at a particular value of vane angle (no. of vanes). In this study, the maximum power is obtained as 4.5kW - 5.3kW (5.5-6.25 HP) when casing diameter is taken 100 mm, and rotor to casing diameter ratios are kept from 0.65 to 0.55. This value of output is sufficient to run motorbike.
Keywords: zero pollution, compressed air, air turbine, vane angle, rotor / casing diameter ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14672813 Active and Reactive Power Control of a DFIG with MPPT for Variable Speed Wind Energy Conversion using Sliding Mode Control
Authors: Youcef Bekakra, Djilani Ben attous
Abstract:
This paper presents the study of a variable speed wind energy conversion system based on a Doubly Fed Induction Generator (DFIG) based on a sliding mode control applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the PWM converter. To extract a maximum of power, the rotor side converter is controlled by using a stator flux-oriented strategy. The created decoupling control between active and reactive stator power allows keeping the power factor close to unity. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed.Keywords: Doubly fed induction generator, wind energy, wind turbine, sliding mode control, maximum power point tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41122812 Condition Monitoring for Controlling the Stability of the Rotating Machinery
Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir
Abstract:
In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The global measurement and analysis of vibration on the cement separator RC500 is carried, the points of measurement used are radial dots, vertical, horizontal and oblique. The measures of trends and spectral analysis for reconnaissance of the main anomalies, the main defects in the separator and manifestation, the results prove that the defects effect has a negative effect on the stability of the rotor. Experimentally the study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances and various excitations.Keywords: Rotor, experimental, defect, frequency, specter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17582811 Numerical Analysis of the Performance of a Shrouded Vertical-Axis Water Turbine based on the NACA 0025 Blade Profile
Authors: M. Raciti Castelli, S. De Betta, E. Benini
Abstract:
This paper presents a numerical analysis of the performance of a five-bladed Darrieus vertical-axis water turbine, based on the NACA 0025 blade profile, for both bare and shrouded configurations. A complete campaign of 2-D simulations, performed for several values of tip speed ratio and based on RANS unsteady calculations, has been performed to obtain the rotor torque and power curves. Also the effect of a NACA-shaped central hydrofoil has been investigated, with the aim of evaluating the impact of a solid blockage on the performance of the shrouded rotor configuration. The beneficial effect of the shroud on rotor overall performances has clearly been evidenced, while the adoption of the central hydrofoil has proved to be detrimental, being the resulting flow slow down (due to the presence of the obstacle) much higher with respect to the flow acceleration (due to the solid blockage effect).Keywords: CFD, vertical axis water turbine, shroud, NACA 0025
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23372810 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.
Keywords: Finite element model, rotordynamic system, model reduction, substructuring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40762809 Development of a Speed Sensorless IM Drives
Authors: Dj. Cherifi, Y. Miloud, A. Tahri
Abstract:
The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases.
The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque.
Keywords: Induction Motor Drive, field-oriented control, adaptive speed observer, stator resistance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20282808 Fuzzy Based Stabilizer Control System for Quad-Rotor
Authors: B. G. Sampath, K. C. R. Perera, W. A. S. I. Wijesuriya, V. P. C. Dassanayake
Abstract:
In this paper the design, development and testing of a stabilizer control system for a Quad-rotor is presented which is focused on the maneuverability. The mechanical design is performed along with the design of the controlling algorithm which is devised using fuzzy logic controller. The inputs for the system are the angular positions and angular rates of the Quad-rotor relative to three axes. Then the output data is filtered from an accelerometer and a gyroscope through a Kalman filter. In the development of the stability controlling system Mandani fuzzy model is incorporated. The results prove that the fuzzy based stabilizer control system is superior in high dynamic disturbances compared to the traditional systems which use PID integrated stabilizer control systems.
Keywords: Fuzzy stabilizer, maneuverability, PID, Quad-rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40362807 Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine
Authors: Mohammad Jafarifar
Abstract:
This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.Keywords: Multiphase induction machine, field oriented control, sliding mode, super twisting algorithm, MRAS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23002806 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modeled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.Keywords: A breathing crack, fault, FFT, nonlinear, orbit, rotorstator rub, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29762805 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13282804 Control of Commutation of SR Motor Using Its Magnetic Characteristics and Back-of-Core Saturation Effects
Authors: Dr. N.H. Mvungi
Abstract:
The control of commutation of switched reluctance (SR) motor has nominally depended on a physical position detector. The physical rotor position sensor limits robustness and increases size and inertia of the SR drive system. The paper describes a method to overcome these limitations by using magnetization characteristics of the motor to indicate rotor and stator teeth overlap status. The method is using active current probing pulses of same magnitude that is used to simulate flux linkage in the winding being probed. A microprocessor is used for processing magnetization data to deduce rotor-stator teeth overlap status and hence rotor position. However, the back-of-core saturation and mutual coupling introduces overlap detection errors, hence that of commutation control. This paper presents the concept of the detection scheme and the effects of backof core saturation.Keywords: Microprocessor control, rotor position, sensorless, switched reluctance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12862803 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed. To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.
Keywords: Design optimization, performance, doubly fed induction generators, DFIG, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980