Search results for: Optical MEMS
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 681

Search results for: Optical MEMS

651 Routing Capability and Blocking Analysis of Dynamic ROADM Optical Networks (Category - II) for Dynamic Traffic

Authors: Indumathi T. S., T. Srinivas, B. Siva Kumar

Abstract:

Reconfigurable optical add/drop multiplexers (ROADMs) can be classified into three categories based on their underlying switching technologies. Category I consists of a single large optical switch; category II is composed of a number of small optical switches aligned in parallel; and category III has a single optical switch and only one wavelength being added/dropped. In this paper, to evaluate the wavelength-routing capability of ROADMs of category-II in dynamic optical networks,the dynamic traffic models are designed based on Bernoulli, Poisson distributions for smooth and regular types of traffic. Through Analytical and Simulation results, the routing power of cat-II of ROADM networks for two traffic models are determined.

Keywords: Fully-Reconfigurable Optical Add-Drop Multiplexers (FROADMs), Limited Tunability in Reconfigurable Optical Add-Drop multiplexers (LROADM), Multiplexer/De- Multiplexer (MUX/DEMUX), Reconfigurable Optical Add-Drop Multiplexers (ROADMs), Wavelength Division Multiplexing (WDM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
650 Solitons in Nonlinear Optical Lattices

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

Based on the Lagrangian for the Gross –Pitaevskii equation as derived by H. Sakaguchi and B.A Malomed [5] we have derived a double well model for the nonlinear optical lattice. This model explains the various features of nonlinear optical lattices. Further, from this model we obtain and simulate the probability for tunneling from one well to another which agrees with experimental results [4].

Keywords: Double well model, nonlinear optical lattice, Solitons, tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
649 Connected Objects with Optical Rectenna for Wireless Information Systems

Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli

Abstract:

Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.

Keywords: Antenna, Rectenna, solar cell, 5G, optical RECTENNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
648 Motion Detection Techniques Using Optical Flow

Authors: A. A. Shafie, Fadhlan Hafiz, M. H. Ali

Abstract:

Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique.

Keywords: Background modeling, Motion detection, Optical flow, Velocity smoothness constant, motion trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5384
647 Performance Evaluation of the OCDM/WDM Technique for Optical Packet Switches

Authors: V. Eramo, L. Piazzo, M. Listanti, A. Germoni, A Cianfrani

Abstract:

The performance of the Optical Code Division Multiplexing/ Wavelength Division Multiplexing (WDM/OCDM) technique for Optical Packet Switch is investigated. The impact on the performance of the impairment due to both Multiple Access Interference and Beat noise is studied. The Packet Loss Probability due to output packet contentions is evaluated as a function of the main switch and traffic parameters when Gold coherent optical codes are adopted. The Packet Loss Probability of the OCDM/WDM switch can reach 10-9 when M=16 wavelengths, Gold code of length L=511 and only 24 wavelength converters are used in the switch.

Keywords: Optical code division multiplexing, bufferless optical packet switch, performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
646 Exploiting Silicon-on-Insulator Microring Resonator Bistability Behavior for All Optical Set-Reset Flip-Flop

Authors: P. Nadimi, D. D. Caviglia, E. Di Zitti

Abstract:

We propose an all optical flip-flop circuit composedof two Silicon-on-insulator microring resonators coupled to straightwaveguides by exploiting the optical bistability behavior due to thenonlinear Kerr effect. We used the transfer matrix analysis toinvestigate continuous wave propagation through microrings, as wellwe considered the nonlinear switching characteristics of an opticaldevice using a double-coupler silicon ring resonator in presence ofthe Kerr nonlinearity, thus obtaining the bistability behavior of theoutput port, the drop port and also inside the silicon microringresonator. It is shown that the bistability behavior depends on thecontrol of the input wavelength.KeywordsAll optical flip-flops, Kerr effect, microringresonator, optical bistability.

Keywords: All optical flip-flops, Kerr effect, microring resonator, optical bistability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
645 Design and Analysis of MEMS based Accelerometer for Automatic Detection of Railway Wheel Flat

Authors: Rajib Ul Alam Uzzal, Ion Stiharu, Waiz Ahmed

Abstract:

This paper presents the modeling of a MEMS based accelerometer in order to detect the presence of a wheel flat in the railway vehicle. A haversine wheel flat is assigned to one wheel of a 5 DOF pitch plane vehicle model, which is coupled to a 3 layer track model. Based on the simulated acceleration response obtained from the vehicle-track model, an accelerometer is designed that meets all the requirements to detect the presence of a wheel flat. The proposed accelerometer can survive in a dynamic shocking environment with acceleration up to ±150g. The parameters of the accelerometer are calculated in order to achieve the required specifications using lumped element approximation and the results are used for initial design layout. A finite element analysis code (COMSOL) is used to perform simulations of the accelerometer under various operating conditions and to determine the optimum configuration. The simulated results are found within about 2% of the calculated values, which indicates the validity of lumped element approach. The stability of the accelerometer is also determined in the desired range of operation including the condition under shock.

Keywords: MEMS accelerometer, Pitch plane vehicle, wheel flat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
644 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3- coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two-soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: Optical soliton, soliton interaction, soliton switching, WDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
643 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials

Authors: N. N. Omehe

Abstract:

CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω)  from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.

Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
642 Development of Low-cost OCDMA Encoder Based On Arrayed Waveguide Gratings(AWGs) and Optical Switches

Authors: Mohammad Syuhaimi Ab-Rahman, Boon Chuan Ng, Norshilawati Mohamad Ibrahim, Sahbudin Shaari

Abstract:

This paper describes the development of a 16-ports optical code division multiple access (OCDMA) encoder prototype based on Arrayed Waveguide Grating (AWG) and optical switches. It is potentially to provide a high security for data transmission due to all data will be transmitted in binary code form. The output signals from AWG are coded with a binary code that given to an optical switch before it signal modulate with the carrier and transmitted to the receiver. The 16-ports encoder used 16 double pole double throw (DPDT) toggle switches to control the polarization of voltage source from +5 V to -5 V for 16 optical switches. When +5 V is given, the optical switch will give code '1' and vice versa. The experimental results showed the insertion loss, crosstalk, uniformity, and optical signal-noise-ratio (OSNR) for the developed prototype are <12 dB, 9.77 dB, <1.63dB, and ≥20dB.

Keywords: AWG, encoder, OCDMA, optical switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
641 Numerical Analysis of All-Optical Microwave Mixing and Bandpass Filtering in an RoF Link

Authors: S. Khosroabadi, M. R. Salehi

Abstract:

In this paper, all-optical signal processors that perform both microwave mixing and bandpass filtering in a radio-over-fiber (RoF) link are presented. The key device is a Mach-Zehnder modulator (MZM) which performs all-optical microwave mixing. An up-converted microwave signal is obtained and other unwanted frequency components are suppressed at the end of the fiber span.

Keywords: Microwave mixing, bandpass filtering, all-optical, signal processing, MZM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
640 Multicasting Characteristics of All-Optical Triode Based On Negative Feedback Semiconductor Optical Amplifiers

Authors: S. Aisyah Azizan, M. Syafiq Azmi, Yuki Harada, Yoshinobu Maeda, Takaomi Matsutani

Abstract:

We introduced an all-optical multicasting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multicasting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multicasting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.

Keywords: Cross gain modulation, multicasting, negative feedback optical amplifier, semiconductor optical amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
639 Navigation and Guidance System Architectures for Small Unmanned Aircraft Applications

Authors: Roberto Sabatini, Celia Bartel, Anish Kaharkar, Tesheen Shaid, Subramanian Ramasamy

Abstract:

Two multisensor system architectures for navigation and guidance of small Unmanned Aircraft (UA) are presented and compared. The main objective of our research is to design a compact, light and relatively inexpensive system capable of providing the required navigation performance in all phases of flight of small UA, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN are compared and the Appearance-Based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway centreline and body rates. Additionally, we address the possible synergies of VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, and the use of Aircraft Dynamics Model (ADM) to provide additional information suitable to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UA platform in real-time. The key mathematical models describing the two architectures i.e., VBN-IMU-GNSS (VIG) system and VIGADM (VIGA) system are introduced. The first architecture uses VBN and GNSS to augment the MEMS-IMU. The second mode also includes the ADM to provide augmentation of the attitude channel. Simulation of these two modes is carried out and the performances of the two schemes are compared in a small UA integration scheme (i.e., AEROSONDE UA platform) exploring a representative cross-section of this UA operational flight envelope, including high dynamics manoeuvres and CAT-I to CAT-III precision approach tasks. Simulation of the first system architecture (i.e., VIG system) shows that the integrated system can reach position, velocity and attitude accuracies compatible with the Required Navigation Performance (RNP) requirements. Simulation of the VIGA system also shows promising results since the achieved attitude accuracy is higher using the VBN-IMU-ADM than using VBN-IMU only. A comparison of VIG and VIGA system is also performed and it shows that the position and attitude accuracy of the proposed VIG and VIGA systems are both compatible with the RNP specified in the various UA flight phases, including precision approach down to CAT-II.

Keywords: Global Navigation Satellite System (GNSS), Lowcost Navigation Sensors, MEMS Inertial Measurement Unit (IMU), Unmanned Aerial Vehicle, Vision Based Navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3215
638 Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator

Authors: S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi

Abstract:

The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.

Keywords: Dielectric constants, optical band gap (Eg), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
637 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window

Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi

Abstract:

In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.

Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
636 Navigation and Self Alignment of Inertial Systems using Nonlinear H∞ Filters

Authors: Saman M. Siddiqui, Fang Jiancheng

Abstract:

Micro electromechanical sensors (MEMS) play a vital role along with global positioning devices in navigation of autonomous vehicles .These sensors are low cost ,easily available but depict colored noises and unpredictable discontinuities .Conventional filters like Kalman filters and Sigma point filters are not able to cope with nonwhite noises. This research has utilized H∞ filter in nonlinear frame work both with Kalman filter and Unscented filter for navigation and self alignment of an airborne vehicle. The system is simulated for colored noises and discontinuities and results are compared with not robust nonlinear filters. The results are found 40%-70% more robust against colored noises and discontinuities.

Keywords: filtering, integrated navigation, MEMS, nonlinearfiltering, self alignment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
635 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait

Authors: Ali A. Hammadi

Abstract:

In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.

Keywords: Passive optical networks, fiber to the premises, access network, OTDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
634 Coherent PON for NG-PON2: 40Gbps Downstream Transmission with 40dB Power Margin using Commercial DFB Lasers and no Optical Amplification

Authors: Roberto Gaudino, Antonino Nespola, Dario Zeolla, Stefano Straullu, Vittorio Curri, Gabriella Bosco, Roberto Cigliutti, Stefano Capriata, Paolo Solina.

Abstract:

We demonstrate a 40Gbps downstream PON transmission based on PM-QPSK modulation using commercial DFB lasers without optical amplifier in the ODN, obtaining 40dB power budget. We discuss this solution within NG-PON2 architectures.

Keywords: DFB lasers, Optical Coherent Receiver, Passive Optical Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
633 Robust Integrated Navigation of a Low Cost System

Authors: Saman M. Siddiqui, Fang Jiancheng

Abstract:

Robust nonlinear integrated navigation of GPS and low cost MEMS is a hot topic of research these days. A robust filter is required to cope up with the problem of unpredictable discontinuities and colored noises associated with low cost sensors. H∞ filter is previously used in Extended Kalman filter and Unscented Kalman filter frame. Unscented Kalman filter has a problem of Cholesky matrix factorization at each step which is a very unstable operation. To avoid this problem in this research H∞ filter is designed in Square root Unscented filter framework and found 50% more robust towards increased level of colored noises.

Keywords: H∞ filter, MEMS, GPS, Nonlinear system, robust system, Square root unscented filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
632 Investigation of I/Q Imbalance in Coherent Optical OFDM System

Authors: R. S. Fyath, Mustafa A. B. Al-Qadi

Abstract:

The inphase/quadrature (I/Q) amplitude and phase imbalance effects are studied in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. An analytical model for the I/Q imbalance is developed and supported by simulation results. The results indicate that the I/Q imbalance degrades the BER performance considerably.

Keywords: Coherent detection, I/Q imbalance, OFDM, optical communications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
631 Main Variables Competition in DFB Lasers under Dual Optical Injection

Authors: Najm M. Al-Hosiny

Abstract:

We theoretically investigate the effects of frequency detuning and injection power on the nonlinear dynamics of DFB lasers under dual external optical injection.

Keywords: Optical injection, DFB laser, frequency detuning, injection power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
630 Magneto-Optical Properties in Transparent Region of Implanted Garnet Films

Authors: Lali Kalanadzde

Abstract:

We investigated magneto-optical Kerr effect in transparent region of implanted ferrite-garnet films for the (YBiCa)3(FeGe)5O12. The implantation process was carried out at room temperature by Ne+ ions with energy of 100 KeV and with various doses (0.5-2.5) 1014 ion/cm2. We discovered that slight deviation of the plane of external alternating magnetic field from plane of sample leads to appearance intensive magneto-optical maximum in transparent region of garnet films ħω=0.5-2.0 eV. In the proceeding, we have also found that the deviation of polarization plane from P- component of incident light leads to the appearance of the similar magneto-optical effects in this region. The research of magnetization processes in transparent region of garnet films showed that the formation of magneto-optical effects in region ħω=0.5-2.3 eV has a rather complex character.

Keywords: Ferrite-garnet films, ion implantation, magneto-optical, thin films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
629 Saturated Gain of Doped Multilayer Quantum Dot Semiconductor Optical Amplifiers

Authors: Omar Qasaimeh

Abstract:

The effect of the number of quantum dot (QD) layers on the saturated gain of doped QD semiconductor optical amplifiers (SOAs) has been studied using multi-population coupled rate equations. The developed model takes into account the effect of carrier coupling between adjacent layers. It has been found that increasing the number of QD layers (K) increases the unsaturated optical gain for K<8 and approximately has no effect on the unsaturated gain for K ≥ 8. Our analysis shows that the optimum ptype concentration that maximizes the unsaturated optical gain of the ground state is NA Ôëê 0.75 ×1018cm-3 . On the other hand, it has been found that the saturated optical gain for both the ground state and the excited state are strong function of both the doping concentration and K where we find that it is required to dope the dots with n-type concentration for very large K at high photon energy.

Keywords: doping, multilayer, quantum dot optical amplifier, saturated gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
628 Determination of Optical Constants of Semiconductor Thin Films by Ellipsometry

Authors: Aïssa Manallah, Mohamed Bouafia

Abstract:

Ellipsometry is an optical method based on the study of the behavior of polarized light. The light reflected on a surface induces a change in the polarization state which depends on the characteristics of the material (complex refractive index and thickness of the different layers constituting the device). The purpose of this work is to determine the optical properties of semiconductor thin films by ellipsometry. This paper describes the experimental aspects concerning the semiconductor samples, the SE400 ellipsometer principle, and the results obtained by direct measurements of ellipsometric parameters and modelling using appropriate software.

Keywords: Ellipsometry, optical constants, semiconductors, thin films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
627 Monitoring and Fault-Recovery Capacity with Waveguide Grating-based Optical Switch over WDM/OCDMA-PON

Authors: Yao-Tang Chang, Chuen-Ching Wang, Shu-Han Hu

Abstract:

In order to implement flexibility as well as survivable capacities over passive optical network (PON), a new automatic random fault-recovery mechanism with array-waveguide-grating based (AWG-based) optical switch (OSW) is presented. Firstly, wavelength-division-multiplexing and optical code-division multiple-access (WDM/OCDMA) scheme are configured to meet the various geographical locations requirement between optical network unit (ONU) and optical line terminal (OLT). The AWG-base optical switch is designed and viewed as central star-mesh topology to prohibit/decrease the duplicated redundant elements such as fiber and transceiver as well. Hence, by simple monitoring and routing switch algorithm, random fault-recovery capacity is achieved over bi-directional (up/downstream) WDM/OCDMA scheme. When error of distribution fiber (DF) takes place or bit-error-rate (BER) is higher than 10-9 requirement, the primary/slave AWG-based OSW are adjusted and controlled dynamically to restore the affected ONU groups via the other working DFs immediately.

Keywords: Random fault recovery mechanism, Array-waveguide-grating based optical switch (AWG- based OSW), wavelength-division-multiplexing and optical code-divisionmultiple-access (WDM/ OCDMA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
626 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks

Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi

Abstract:

Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.

Keywords: Fiber-Wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
625 Behavior of Optical Fiber Aged in CTAC Solutions

Authors: R. El Abdi, A. D. Rujinski, R. M. Boumbimba, M. Poulain

Abstract:

The evolution of silica optical fiber strength aged in cetyltrimethylammonium chloride solution (CTAC) has been investigated. If the solution containing surfactants presents appreciable changes in physical and chemical properties at the critical micelle concentration (CMC), a non negligible mechanical behavior fiber change is observed for silica fiber aged in cationic surfactants as CTAC which can lead to optical fiber reliability questioning. The purpose of this work is to study the mechanical behavior of silica coated and naked optical fibers in contact with CTAC solution at different concentrations. Result analysis proves that the immersion in CTAC drastically decreases the fiber strength and specially near the CMC point. Beyond CMC point, a small increase of fiber strength is analyzed and commented.

Keywords: Optical fiber, CMC point, CTAC surfactant, fiber strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
624 Use Cases Analysis of Free Space Optical Communication System

Authors: K. Saab, F. Bart, Y.-M. Seveque

Abstract:

The deployment of Free Space Optical Communications (FSOC) systems requires the development of robust and reliable Optical Ground Stations (OGS) that can be easily installed and operated. To this end, the Engineering Department of Airbus Defence and Space is actively working on the development of innovative and compact OGS solutions that can be deployed in various environments and provide high-quality connectivity under different atmospheric conditions. This article presents an overview of our recent developments in this field, including an evaluation study of different use cases of the FSOC with respect to different atmospheric conditions. The goal is to provide OGS solutions that are both simple and highly effective, allowing for the deployment of high-speed communication networks in a wide range of scenarios.

Keywords: End-to-end optical communication, laser propagation, optical ground station, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139
623 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Authors: Manoj Kumar Dutta

Abstract:

Wavelength Division Multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating Fiber Delay Lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
622 Spectral Broadening in an InGaAsP Optical Waveguide with χ(3) Nonlinearity Including Two Photon Absorption

Authors: Keigo Matsuura, Isao Tomita

Abstract:

We have studied a method to widen the spectrum of optical pulses that pass through an InGaAsP waveguide for application to broadband optical communication. In particular, we have investigated the competitive effect between spectral broadening arising from nonlinear refraction (optical Kerr effect) and shrinking due to two photon absorption in the InGaAsP waveguide with χ(3) nonlinearity. The shrunk spectrum recovers broadening by the enhancement effect of the nonlinear refractive index near the bandgap of InGaAsP with a bandgap wavelength of 1490 nm. The broadened spectral width at around 1525 nm (196.7 THz) becomes 10.7 times wider than that at around 1560 nm (192.3 THz) without the enhancement effect, where amplified optical pulses with a pulse width of ∼ 2 ps and a peak power of 10 W propagate through a 1-cm-long InGaAsP waveguide with a cross-section of 4 (μm)2.

Keywords: InGaAsP Waveguide, χ(3) Nonlinearity, Spectral Broadening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4279