
Abstract—We demonstrate a 40Gbps downstream PON
transmission based on PM-QPSK modulation using commercial DFB
lasers without optical amplifier in the ODN, obtaining 40dB power
budget. We discuss this solution within NG-PON2 architectures.

Keywords—DFB lasers, Optical Coherent Receiver, Passive
Optical Networks.

I. INTRODUCTION

ODAY (Spring 2011), the two most advanced physical
layer (PHY) standards officially released for Passive

Optical Networks (PON) are the IEEE 802.3av, usually
indicated as 10G EPON, and the G.987.2, typically identified
as XG-PON1. These two standards are different in their details
and have different classes of power budget, but they
nevertheless share some common features for the Physical
Media Dependent (PMD) section, that are shortly described in
the following list.

Purely passive Optical Distribution Network (ODN): no
optical amplification is used between the Optical Line
Terminal (OLT) and the Optical Network Unit (ONU), with
power budget as high as 35dB and reach up to 40Km. The
power splitting factor is at least 1x64.

Non Return to Zero (NRZ) intensity modulation with direct
detection, single wavelength transmission per direction with
following bit-rates: 10Gbps downstream, 2.5 or 10Gbps
upstream. TDM for the downstream, TDMA for the upstream.

In Q3 2010, the FSAN group started its studies on the
options for the next generation PON, in order to define a new
set of specifications, that are usually indicated with the
acronym NG-PON2. For the physical layer, the targeted
upgrades to the aforementioned standards are along the three
directions reported in the list below, that will be indicated in
the rest of the paper as “NG-PON2 targets”.

Increasing of the bit rate above 10Gbps per direction, thus
moving to a total throughput per direction of at least 40Gbps
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and a bit rate per user moving toward 1Gbps.Upgrade to
higher splitting factor, up to 1x1024: it requires an extremely
high available power budget of the order of 40dB.

Extension to long reach transmission, up to several tens of
kilometers to allow central office consolidation.The
achievement of such targets together with low-cost constraints,
in particular for the ONU side, is an extremely challenging
task. On top of this, many Telecom Operators, such as the big
national incumbents, would also like to avoid any modification
in the ODN when they will move from XG-PON1 to NG-
PON2, and thus would like to add two more constraints to the
previous NG-PON2 targets. These are about keeping the
optical passive splitters, thus avoiding any WDM filters in the
ODN (“filter-less PON”), and maintaining the passive
structure, thus avoiding any optical amplification in the ODN.

The “mainstream” direction for the R&D community, as
presented at the recent ECOC and OFC conferences, seems to
go in the direction of introducing the WDM technology for
NG-PON2. When anyway considering the “filter-less PON”
requirement, most of the proposed WDM-PON architectures
are ruled out. A possible alternative option seems to be a
coherent PON, that couples an extremely good receiver
sensitivity with an excellent receiver tunability without the use
of optical filters. An option for this class of systems was for
instance proposed in [1].

In this work, we investigate on a different approach, that
mostly maintains all the features of NG-PON1. In particular, it
keeps the use of a single wavelength per transmission
direction, and simply uses the features of coherent detection to
obtain an increase in bit rate, reach and splitting factor. The
rationale of the paper is to show a preliminary assessment for
this solution, including power budget requirements, constraints
for optical sources and a discussion on its complexity.

II.THE ANALYZED SETUP

The system we investigate in this paper emulates
downstream PON transmission. It is based on a single
wavelength transmission at 40Gbps using Polarization
Multiplexed Quadrature Phase Shift Keying (PM-QPSK),
without any optical amplification or optical filtering in the
ODN and ONU, as required by a pure passive and filter-less
ODN. We aimed the analysis to the attainable optical power
budget and to the possibility of using commercial Distributed
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Feed Back (DFB) lasers rather than more expensive External
Cavity Lasers (ECL). The experimental system setup is shown
in Fig. 1. We use a PM-QPSK transmitter at 40Gbps,
connected to a variable optical attenuator that emulates the
optical loss of the ODN. The received signal is sent to a
coherent homodyne PM-QPSK receiver followed by a real
time oscilloscope and an off-line digital signal processing
(DSP) [2] based on the CMA algorithm implemented as
MatlabTM code. The transmitted wavelength is 1551.59nm, the
local oscillator (LO) power is set to PLO=11dBm and we
collected 1MSymbol for the off-line DSP.

We wanted to investigate the system performance using
different types of lasers for the Tx and local oscillator. In a
first experiment, we used two laboratory tunable ECL lasers,
having a very high stability and narrow linewidth (few tens of
KHz). For the second experiment, we employed two
commercial DFB lasers (Mitsubishi FU-68PDF-V510MxxB),
whose datasheet specifies a 3dB spectral linewidth up to
20MHz.

III. THE EXPERIMENTAL AND SIMULATIVE RESULTS

The experimental and simulative results are given in Fig. 2
as measurement of BER vs. the received power. The
sensitivity at a Bit Error Rate (BER) equal to 10-4 is -28.2dBm,
while at BER=10-3 it is around -30dBm. The difference in
performance between the ECL and DFB cases is marginal, of
the order of 0.2dB at most. From these experimental results,
we can draw the important remarks listed below.

1. If we assume to maintain the same FEC standard of the
current XG-PON1, corresponding to a BER threshold
equal to 10-3 and to operate with PTX =10dBm at the
output of the PM-QPSK transmitter (a level that is
easily in the range of a SOA used as a booster at the
OLT side), the proposed system shows a 40dB optical
power budget, reaching one of the main targets set for
NG-PON2.

2. The performance of the combination of the two DFBs
is surprisingly good, considering that the nominal
3dB bandwidth specified in the datasheet is 20MHz
for each of the two lasers used in Tx and as LO. The

3. Overall 3dB sum linewidth equal to 40MHz should
have given an unacceptably high penalty at 40Gbps

PM-QPSK due to the impact of phase noise, even for
the best-in-class carrier phase estimation (CPE)
algorithms. Using results of [3], the product of the
(sum) linewidth ftot multiplied by the symbol
duration Ts is in our case ftot Ts=4 10-3,
corresponding to a theoretical penalty of more than
2dB (see [3], Fig. 7).

4. We further investigated the phase noise issue. We
found out that the actual short-term (nanosecond
acquisition time frame) DFB laser linewidth is much
smaller. We used the method presented in [4], finding
that the short term linewidth for two DFB lasers used
in the experiments was 2.7MHz and 1.9MHz (thus
much less than what it is declared in the datasheet),
for an actual value ftot Ts=4.6 10-4. Using again [3],
Fig. 7, the resulting phase noise penalty is expected to
be negligible, confirming our experimental results.
This is due to the actual implementation of the CPE
within the Rx DSP, which is based on the
Viterbi&Viterbi (or “Power-law average” [3])
algorithm: it averages the phase over few symbols
and consequently its performance is determined by
the short-term laser linewidth.

We further studied the actual cause of the obtained
sensitivity (about -30dBm at BER=10-3) running a set of
detailed simulations using the commercial simulator
OptSim™, matching all the experimental system parameters in
order to identify the most relevant contributions to the power
budget. The BER was evaluated through direct error counting
over 106 bits. Since our system is not optically pre-amplified
and the impact of phase noise is negligible, the most relevant
noise sources leading to the actual sensitivity, besides other
second order effects, should be shot-noise in the photo-
detection process and thermal noise in the receiver
transimpedance amplifiers (integrated in the balanced
photodiodes in our setup). We thus introduced these two noise
sources in our simulations: the results are shown as solid
curves in Fig. 2. Considering a target BER of 10-3, the
experimental results have a 2.9dB penalty with respect to the
shot-noise only curve, while there is nearly a perfect matching
when also including the thermal noise of the balanced
photodiodes. Note that, due to the small received signal level,

Fig. 1 Mapping nonlinear data to a higher dimensional feature space
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the Rx ADC dynamic was not entirely used. Analyzing the
experimental results, we estimated that only 4 resolution bits
out of the nominal 7 were used. Therefore, in the simulations
with thermal noise we used that value, obtaining the displayed
excellent agreement. Moreover, we were able to estimate by
simulation the quantization penalty to be about 0.3dB,
predicting that a further reduction to 3 resolution bits would
give a larger extra penalty of about 1dB.
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Fig. 2 BER vs. received power: experimental and simulative results

IV. CONCLUSION

We can conclude that our system is about 3.2dB apart from
the quantum limit. Note that the sensitivity refers to PRX in Fig.
1, i.e., to the output of the ODN and before the Rx optical
hybrid (that in our case has approximately 8dB attenuation on
both the signal and LO paths). Thus, for a sensitivity PRX=-
30dBm, the signal power reaching each photodiode is lower
than -38dBm. The system sensitivity can thus be potentially
improved by decreasing the optical hybrid insertion loss and/or
by a reduction of the effect of the thermal noise, which in turn
can be obtained by either using lower noise balanced
photodiode, or by increasing the LO power (PLO in Fig. 1). We
also demonstrated that commercial DFB lasers can be used as
Tx and LO optical sources and that the ADC introduces a
limited penalty down to 4 bit quantization.

Even though PM-QPSK has received so much research
attention for the optically amplified long-haul case, the results
presented in this paper show the potential interest of
coherently received PM-QPSK also in the non amplified
scenario, for next generation NG-PON2. The key point would
be in the integration of the required optical and electronic
components, that today have exceedingly high costs for PON
applications. Still, the roadmap for NG-PON2 is years ahead,
so there is space for cost reduction through optoelectronic
integration and mass-volumes.
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