Search results for: Magnetic Properties.
3172 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment
Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo
Abstract:
The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29553171 Effect of Exchange Interaction J on Magnetic Moment of MnO
Authors: C. Thassana, W. Techitdheera
Abstract:
This calculation focus on the effect of exchange interaction J and Coulomb interaction U on spin magnetic moments (ms) of MnO by using the local spin density approximation plus the Coulomb interaction (LSDA+U) method within full potential linear muffin-tin orbital (FP-LMTO). Our calculated results indicated that the spin magnetic moments correlated to J and U. The relevant results exhibited the increasing spin magnetic moments with increasing exchange interaction and Coulomb interaction. Furthermore, equations of spin magnetic moment, which h good correspondence to the experimental data 4.58μB, are defined ms = 0.11J +4.52μB and ms = 0.03U+4.52μB. So, the relation of J and U parameter is obtained, it is obviously, J = -0.249U+1.346 eV.Keywords: exchange interaction J, the Coulomb interaction U, spin magnetic moment, LSDA+U, MnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17403170 Understanding the Behavior of Superconductors by Analyzing Permittivity
Authors: Fred Lacy
Abstract:
A superconductor has the ability to conduct electricity perfectly and exclude magnetic fields from its interior. In order to understand electromagnetic characteristics of superconductors, their material properties need to be examined. To facilitate this understanding, a theoretical model based on concepts of electromagnetics is presented to explain the electrical and magnetic properties of superconductors. The permittivity response is the key aspect of the model and it describes the electrical resistance response and why it vanishes at the material’s critical temperature. The model also explains the behavior of magnetic fields and why they cannot exist inside superconducting materials. The theoretical concepts and equations associated with this model are used to demonstrate that they are sufficient in describing the behavior of both type I and type II (or high temperature) superconductors. This model is also able to explain why superconductors behave differently than perfect conductors. As a result, examining the permittivity response and understanding electromagnetic field theory provides insight into the major aspects associated with superconducting materials.
Keywords: Ampere’s law, permittivity, permeability, resistivity, Schrödinger wave equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6853169 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods
Authors: M. Ghobeiti-Hasab
Abstract:
Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and solgel auto-combustion methods were 1300°C and 1000°C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Srferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.
Keywords: Sr-ferrite, Sol-gel, Magnetic properties, Calcination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24733168 Calculation of Masses and Magnetic Moment of the Nucleon using the MIT Bag Model
Authors: Mahvash Zandy Navgaran, Maryam Momeni Feili
Abstract:
The bag radius of the nucleon can be determined by MIT bag model based on electric and magnetic form factors of the nucleon. Also we determined the masses and magnetic moment of the nucleon with MIT bag model, using bag radius and compared with other results, suggests a suitable compatibility.
Keywords: MIT bag model, masses and magnetic moment of thenucleon, bag radius of the nucleon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14123167 Impedance of an Encircling Coil due to a Cylindrical Tube with Varying Properties
Authors: Valentina Koliskina
Abstract:
Change in impedance of an encircling coil is obtained in the present paper for the case where the electric conductivity and magnetic permeability of a metal cylindrical tube depend on the radial coordinate. The system of equations for the vector potential is solved by means of the Fourier cosine transform. The solution is expressed in terms of improper integral containing modified Bessel functions of complex order.Keywords: Eddy currents, magnetic permeability, Besselfunctions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17733166 Controlled Assembly of Magnetic Biomolecular Nanostructures
Authors: Hui Wang, Harish Padmanabhan, David Thomson, Krassen Dimitrov
Abstract:
Two optimized strategies were successfully established to develop biomolecule-based magnetic nanoassemblies. Streptavidin-coated and amine-coated magnetic nanoparticles were chosen as model scaffolds onto which double-stranded DNA and human immunoglobulin G were specifically conjugated in succession, using biotin-streptavidin interaction or covalent cross-linkers. The success of this study opens the prospect of developing selective and sensitive nanoparticle-based structures for diagnostics or drug delivery.Keywords: Antibody, DNA, linker, magnetic nanoparticles, streptavidin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15493165 Effect of a Magnetic Field on the Onset of Marangoni Convection in a Micropolar Fluid
Authors: Mohd Nasir Mahmud, Ruwaidiah Idris, Ishak Hashim
Abstract:
With the presence of a uniform vertical magnetic field and suspended particles, thermocapillary instability in a horizontal liquid layer is investigated. The resulting eigenvalue is solved by the Galerkin technique for various basic temperature gradients. It is found that the presence of magnetic field always has a stability effect of increasing the critical Marangoni number.
Keywords: Marangoni convection, Magnetic field, Micropolar fluid, Non-uniform thermal gradient, Thermocapillary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16373164 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method
Authors: M. Ghobeiti-Hasab, Z. Shariati
Abstract:
In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.
Keywords: Hard magnet, Sr-ferrite, Sol-gel auto-combustion, Nano-powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37263163 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field
Authors: Anurag Gaur, Nidhi, Shashi Sharma
Abstract:
Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18343162 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water
Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing
Abstract:
As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.Keywords: HGMS, particulates, superoxide dismutase activity, steel wool magnetic medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9273161 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3/Kerosene under Magnetic Field
Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Khaloyi
Abstract:
This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°,45°, 60°,75° and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.Keywords: Copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21713160 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol–Gel Method with Participation of Auto–Combustion
Authors: V. S. Bushkova
Abstract:
It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.
Keywords: Magnetic materials, ferrites, sol–gel technology, nanocrystalline powders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18973159 Formation of (Ga,Mn)N Dilute Magnetic Semiconductor by Manganese Ion Implantation
Authors: N.S. Pradhan, S.K. Dubey, A. D.Yadav, Arvind Singh, D.C. Kothari
Abstract:
Un-doped GaN film of thickness 1.90 mm, grown on sapphire substrate were uniformly implanted with 325 keV Mn+ ions for various fluences varying from 1.75 x 1015 - 2.0 x 1016 ions cm-2 at 3500 C substrate temperature. The structural, morphological and magnetic properties of Mn ion implanted gallium nitride samples were studied using XRD, AFM and SQUID techniques. XRD of the sample implanted with various ion fluences showed the presence of different magnetic phases of Ga3Mn, Ga0.6Mn0.4 and Mn4N. However, the compositions of these phases were found to be depended on the ion fluence. AFM images of non-implanted sample showed micrograph with rms surface roughness 2.17 nm. Whereas samples implanted with the various fluences showed the presence of nano clusters on the surface of GaN. The shape, size and density of the clusters were found to vary with respect to ion fluence. Magnetic moment versus applied field curves of the samples implanted with various fluences exhibit the hysteresis loops. The Curie temperature estimated from zero field cooled and field cooled curves for the samples implanted with the fluence of 1.75 x 1015, 1.5 x 1016 and 2.0 x 1016 ions cm-2 was found to be 309 K, 342 K and 350 K respectively.Keywords: GaN, Ion implantation, XRD, AFM, SQUID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19453158 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method
Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez
Abstract:
Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.
Keywords: Ferrites, heating capability, hemolysis, nanoparticles, sol-gel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9033157 Solver for a Magnetic Equivalent Circuit and Modeling the Inrush Current of a 3-Phase Transformer
Authors: Markus G. Ortner, Christian Magele, Klaus Krischan
Abstract:
Knowledge about the magnetic quantities in a magnetic circuit is always of great interest. On the one hand, this information is needed for the simulation of a transformer. On the other hand, parameter studies are more reliable, if the magnetic quantities are derived from a well established model. One possibility to model the 3-phase transformer is by using a magnetic equivalent circuit (MEC). Though this is a well known system, it is often not an easy task to set up such a model for a large number of lumped elements which additionally includes the nonlinear characteristic of the magnetic material. Here we show the setup of a solver for a MEC and the results of the calculation in comparison to measurements taken. The equations of the MEC are based on a rearranged system of the nodal analysis. Thus it is possible to achieve a minimum number of equations, and a clear and simple structure. Hence, it is uncomplicated in its handling and it supports the iteration process. Additional helpful tasks are implemented within the solver to enhance the performance. The electric circuit is described by an electric equivalent circuit (EEC). Our results for the 3-phase transformer demonstrate the computational efficiency of the solver, and show the benefit of the application of a MEC.
Keywords: Inrush current, magnetic equivalent circuit, nonlinear behavior, transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24663156 Yang-Lee Edge Singularity of the Infinite-Range Ising Model
Authors: Seung-Yeon Kim
Abstract:
The Ising ferromagnet, consisting of magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising ferromagnet has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising ferromagnet explains the gas-liquid phase transitions accurately. In particular, the Ising ferromagnet in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising ferromagnet in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising ferromagnet with that of the square-lattice Ising ferromagnet in an external magnetic field.
Keywords: Ising ferromagnet, Magnetic field, Partition function zeros, Yang-Lee edge singularity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32513155 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis
Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh
Abstract:
This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe3O4) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.
Keywords: LDL Surface Concentration (LSC), Magnetic field, Computational fluid dynamics, Porous wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15733154 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles
Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic
Abstract:
Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.
Keywords: Magnetic nanoparticles, MNPs, Differential magnetic susceptibility, DMS, Magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7073153 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids
Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash
Abstract:
The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.Keywords: Ferroconvection, throughflow, temperature dependent viscosity, magnetic field dependent viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11473152 Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording
Authors: P. Tueku, P. Supnithi, R. Wongsathan
Abstract:
Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.
Keywords: Heat-Assisted Magnetic Recording, Thermal Williams-Comstock equation, Microtrack model, Equalizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18843151 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines
Authors: Humanyun Zahir, Irtsam Ghazi
Abstract:
This paper outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter is presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.
Keywords: Magnetic Induction, Flow meter, Faradays law, Immersion, Cathodic protection, Anode, Cathode. Flange, Grounding, Plant information management system, Electrodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26773150 Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt
Authors: Ahmed Hossam_ ElDin, Ahmed Farag, Ibrahim Madi., Hanaa Karawia
Abstract:
In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements.Keywords: Distribution substation, magnetic field, measurement, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22993149 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method
Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or
Abstract:
This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26923148 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge
Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif
Abstract:
The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26133147 Optimal Controller Design for Linear Magnetic Levitation Rail System
Authors: Tooraj Hakim Elahi, Abdolamir Nekoubin
Abstract:
In many applications, magnetic suspension systems are required to operate over large variations in air gap. As a result, the nonlinearities inherent in most types of suspensions have a significant impact on performance. Specifically, it may be difficult to design a linear controller which gives satisfactory performance, stability, and disturbance rejection over a wide range of operating points. in this paper an optimal controller based on discontinuous mathematical model of the system for an electromagnetic suspension system which is applied in magnetic trains has been designed . Simulations show that the new controller can adapt well to the variance of suspension mass and gap, and keep its dynamic performance, thus it is superior to the classic controller.Keywords: Magnetic Levitation, optimal controller, mass and gap
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32053146 Design of Wireless and Traceable Sensors for Internally Illuminated Photoreactors
Authors: Alexander Sutor, David Demetz
Abstract:
We present methods for developing wireless and traceable sensors for photobioreactors or photoreactors in general. The main focus of application are reactors which are wirelessly powered. Due to the promising properties of the propagation of magnetic fields under water we implemented an inductive link with an on/off switched hartley-oscillator as transmitter and an LC-tank as receiver. For this inductive link we used a carrier frequency of 298 kHz. With this system we performed measurements to demonstrate the independence of the magnetic field from water or salty water. In contrast we showed the strongly reduced range of RF-transmitter-receiver systems at higher frequencies (433 MHz and 2.4 GHz) in water and in salty water. For implementing the traceability of the sensors, we performed measurements to show the well defined orientation of the magnetic field of a coil. This information will be used in future work for implementing an inductive link based traceability system for our sensors.Keywords: Wireless sensors, traceable sensors, photoreactor, internal illumination, wireless power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7933145 Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field
Authors: M. Kalbac, T. Verhagen, K. Drogowska, J. Vejpravova
Abstract:
One- and two-dimensional carbon nanostructures with sp2 hybridization of carbon atoms (single walled carbon nanotubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper we present a comparative study of graphene and single-wall carbon nanotubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nanostructures induced by a strong magnetic field.
Keywords: Carbon nanostructures, magnetic field, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26513144 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells
Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs
Abstract:
Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.
Keywords: Dynamic magnetic field, Lipofection, Magnetofection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17623143 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.
Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763