Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30850
Controlled Assembly of Magnetic Biomolecular Nanostructures

Authors: Hui Wang, Harish Padmanabhan, David Thomson, Krassen Dimitrov


Two optimized strategies were successfully established to develop biomolecule-based magnetic nanoassemblies. Streptavidin-coated and amine-coated magnetic nanoparticles were chosen as model scaffolds onto which double-stranded DNA and human immunoglobulin G were specifically conjugated in succession, using biotin-streptavidin interaction or covalent cross-linkers. The success of this study opens the prospect of developing selective and sensitive nanoparticle-based structures for diagnostics or drug delivery.

Keywords: magnetic nanoparticles, Dna, Antibody, linker, streptavidin

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219


[1] C. G. Fathman, L. Soares, S. M. Chan, P. J. Utz. "An array of possibilities for the study of autoimmunity". Nature. 2005; 435: 605-11.
[2] U. B. Nielsen, M. H. Cardone, A. J. Sinskey, G. MacBeath, P. K. Sorger. "Profiling receptor tyrosine kinase activation by using Ab microarrays". P Natl Acad Sci USA. 2003; 100: 9330-5.
[3] L. Belov, S. P. Mulligan, N. Barber, et al. "Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray". Brit J Haematol. 2006; 135: 184-97.
[4] J. Ladd, C. Boozer, Q. M. Yu, S. F. Chen, J. Homola, S. Jiang. "DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge". Langmuir. 2004; 20: 8090-5.
[5] R. Wacker, H. Schroder, C. M. Niemeyer. "Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study". Analytical Biochemistry. 2004; 330: 281-7.
[6] E. R. Hendrickson, T. M. H. Truby, R. D. Joerger, W. R. Majarian, R. C. Ebersole. "A sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain-reaction". Nucleic Acids Research. 1995; 23: 522-9.
[7] C. M. Niemeyer, M. Adler, R. Wacker. "Lmmuno-PCR: high sensitivity detection of proteins by nucleic acid amplification". Trends Biotechnol. 2005; 23: 208-16.
[8] H. T. Zhang, X. Cheng, M. Richter, M. I. Greene. "A sensitive and high-throughput assay to detect low-abundance proteins in serum". Nat Med. 2006; 12: 473-7.
[9] S. Fredriksson, W. Dixon, H. Ji, A. C. Koong, M. Mindrinos, R. W. Davis. "Multiplexed protein detection by proximity ligation for cancer biomarker validation". Nat Methods. 2007; 4: 327-9.
[10] I. A. Kozlov, P. C. Melnyk, K. E. Stromsborg, M. S. Chee, D. L. Barker, C. F. Zhao. "Efficient strategies for the conjugation of oligonucleotides to antibodies enabling highly sensitive protein detection". Biopolymers. 2004; 73: 621-30.
[11] J. M. Nam, C. S. Thaxton, C. A. Mirkin. "Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins". Science. 2003; 301: 1884-6.
[12] C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed. "Chemistry and properties of nanocrystals of different shapes". Chem Rev. 2005; 105: 1025-102.
[13] A. N. Shipway, E. Katz, I. Willner. "Nanoparticle arrays on surfaces for electronic, optical, and sensor applications". Chemphyschem. 2000; 1: 18-52.
[14] L. M. Rossi, A. D. Quach, Z. Rosenzweig. "Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing". Anal Bioanal Chem. 2004; 380: 606-13.
[15] L. Y. Wang, J. Bao, L. Wang, F. Zhang, Y. D. Li. "One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres". Chem-Eur J. 2006; 12: 6341-7.
[16] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer. "Nanocarriers as an emerging platform for cancer therapy". Nature Nanotechnology. 2007; 2: 751-60.
[17] Solulink. S-HyNic Bioconjugation Technical Manual. California, 2009.