Yang-Lee Edge Singularity of the Infinite-Range Ising Model
Authors: Seung-Yeon Kim
Abstract:
The Ising ferromagnet, consisting of magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising ferromagnet has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising ferromagnet explains the gas-liquid phase transitions accurately. In particular, the Ising ferromagnet in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising ferromagnet in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising ferromagnet with that of the square-lattice Ising ferromagnet in an external magnetic field.
Keywords: Ising ferromagnet, Magnetic field, Partition function zeros, Yang-Lee edge singularity.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099170
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3254References:
[1] C. Domb, The Critical Point, Taylor and Francis, London, 1996.
[2] L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Physical Review, 65 (1944) 117-149.
[3] S.-Y. Kim, “Yang-Lee zeros of the one-dimensional Q-state Potts model”, Journal of the Korean Physical Society, 44 (2004) 495-500.
[4] S.-Y. Kim, “Fisher zeros and Potts zeros of the Q-state Potts model in a magnetic field”, Journal of the Korean Physical Society, 45 (2004) 302-309.
[5] J. Lee, “Low-temperature behavior of the finite-size one-dimensional Ising model and the partition function zeros”, Journal of the Korean Physical Society, 65 (2014) 676-683.
[6] S.-Y. Kim, “Generalized Schottky anomaly”, Journal of the Korean Physical Society, 65 (2014) 970-972.
[7] C. N. Yang and T. D. Lee, “Statistical theory of equations of state and phase transitions. I. Theory of condensation”, Physical Review, 87 (1952) 404-409.
[8] T. D. Lee and C. N. Yang, “Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model”, Physical Review, 87 (1952) 410-419.
[9] S.-Y. Kim and R. J. Creswick, “Yang-Lee zeros of the Q-state Potts model in the complex magnetic field plane”, Physical Review Letters, 81 (1998) 2000-2003.
[10] P. J. Kortman and R. B. Griffiths, “Density of zeros on the Lee-Yang circle for two Ising ferromagnets”, Physical Review Letters, 27 (1971) 1439-1442.
[11] M. E. Fisher, “Yang-Lee edge singularity and φ3 field theory”, Physical Review Letters, 40 (1978) 1610-1613.
[12] G. A. Baker, M. E. Fisher, and P. Moussa, “Yang-Lee edge singularity in the hierarchical model”, Physical Review Letters, 42 (1979) 615-618.
[13] K. Uzelac, P. Pfeuty, and R. Jullien, “Yang-Lee edge singularity from a real-space renormaliztion-group method”, Physical Review Letters, 43 (1979) 805-808.
[14] G. Parisi and N. Sourlas, “Critical behavior of branched polymers and the Lee-Yang edge singularity”, Physical Review Letters, 46 (1981) 871- 874.
[15] D. Dhar, “Exact solution of a directed-site animals-enumeration problem in three dimensionals”, Physical Review Letters, 51 (1983) 853-856.
[16] J. L. Cardy, “Conformal invariance and the Yang-Lee edge singularity in two dimensionals”, Physical Review Letters, 54 (1985) 1354-1356.
[17] C. Binek, “Density of zeros on the Lee-Yang circle obtained from magnetization data of a two-dimensional Ising ferromagnet”, Physical Review Letters, 81 (1998) 5644-5647.
[18] S.-Y. Kim, “Density of Yang-Lee zeros and Yang-Lee edge singularity for the antiferromagnetic Ising model”, Nuclear Physics B, 705 (2005) 504-520.
[19] S.-Y. Kim, “Density of Yang-Lee zeros for the Ising ferromagnet”, Physical Review E, 74 (2006) 011119:1-7.
[20] S.-Y. Kim, “Yang-Lee edge singularity of the square-lattice Ising ferromagnet”, Journal of the Korean Physical Society, 59 (2011) 2205-2208.
[21] M. E. Fisher, “The nature of critical points,” in Lectures in Theoretical Physics, vol. 7c, W. E. Brittin, Ed. Boulder: University of Colorado Press, 1965, pp. 1-159.
[22] R. J. Creswick and S.-Y. Kim, “Finite-size scaling of the density of zeros of the partition function in first- and second-order phase transitions”, Physical Review E, 56 (1997) 2418-2422.
[23] S.-Y. Kim and R. J. Creswick, “Fisher zeros of the Q-state Potts model in the complex temperature plane for nonzero external magnetic field”, Physical Review E, 58 (1998) 7006-7012.
[24] R. J. Creswick and S.-Y. Kim, “Microcanonical transfer matrix study of the Q-state Potts model”, Computer Physics Communications, 121 (1999) 26-29.
[25] S.-Y. Kim and R. J. Creswick, “Exact results for the zeros of the partition function of the Potts model on finite lattices”, Physica A, 281 (2000) 252-261.
[26] S.-Y. Kim, R. J. Creswick, C.-N. Chen, and C.-K. Hu, “Partition function zeros of the Q-state Potts model for non-integer Q”, Physica A, 281 (2000) 262-267.
[27] S.-Y. Kim and R. J. Creswick, “Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q”, Physical Review E, 63 (2001) 066107:1-12.
[28] W. Janke and R. Kenna, “The strength of first and second order phase transitions from partition function zeroes”, Journal of Statistical Physics, 102 (2001) 1211-1227.
[29] B. P. Dolan, W. Janke, D. A. Johnston, and M. Stathakopoulos, “Thin Fisher zeros”, Journal of Physics A, 34 (2001) 6211-6223.
[30] S.-Y. Kim, “Partition function zeros of the Q-state Potts model on the simple-cubic lattice”, Nuclear Physics B, 637 (2002) 409-426.
[31] S.-Y. Kim, “Yang-Lee zeros of the antiferromagnetic Ising model”, Physical Review Letters, 93 (2004) 130604:1-4.
[32] S.-Y. Kim, “Density of the Fisher zeros for the three-state and four-state Potts models”, Physical Review E, 70 (2004) 016110:1-5.
[33] S.-Y. Kim, “Fisher zeros of the Ising antiferromagnet in an arbitrary nonzero magnetic field plane”, Physical Review E, 71 (2005) 017102:1- 4.
[34] I. Bena, M. Droz, and A. Lipowski, “Statistical mechanics of equilibrium and nonequilbrium phase transitions: The Yang-Lee formalism”, International Journal of Modern Physics B, 19 (2005) 4269-4329.
[35] S.-Y. Kim, “Honeycomb-lattice antiferromagnetic Ising model in a magnetic field”, Physics Letters A, 358 (2006) 245-250.
[36] J. L. Monroe and S.-Y. Kim, “Phase diagram and critical exponent ν for the nearest-neighbor and next-nearest-neighbor interaction Ising model”, Physical Review E, 76 (2007) 021123:1-5.
[37] C.-O. Hwang, S.-Y. Kim, D. Kang, and J. M. Kim, “Ising antiferromagnets in a nonzero uniform magnetic field”, Journal of Statistical Mechanics, 7 (2007) L05001:1-8.
[38] X.-Z. Wang, “Yang-Lee circle theorem for an ideal pseudospin-1/2 Bose gas in an arbitrary external potential and in an external magnetic field”, Physica A, 380 (2007) 163-171.
[39] S.-Y. Kim, C.-O. Hwang, and J. M. Kim, “Partition function zeros of the antiferromagnetic Ising model on triangular lattice in the complex temperature plane for nonzero magnetic field”, Nuclear Physics B, 805 (2008) 441-450.
[40] N. Ananikian, L. Ananikyan, R. Artuso, and K. Sargsyan, “The partition function zeros for a Potts model of helix-coil transition with three-site interactions”, Physica A, 387 (2008) 5433-5439.
[41] S.-Y. Kim, “Specific heat of the square-lattice Ising antiferromagnet in a magnetic field”, Journal of Physical Studies, 13 (2009) 4006:1-3.
[42] P. R. Crompton, “The partition function zeroes of quantum critical points”, Nuclear Physics B, 810 (2009) 542-562.
[43] S.-Y. Kim, “Partition function zeros of the square-lattice Ising model with nearest- and next-nearest-neighbor interactions”, Physical Review E, 81 (2010) 031120:1-7.
[44] S.-Y. Kim, “Partition function zeros of the honeycomb-lattice Ising antiferromagnet in the complex magnetic-field plane”, Physical Review E, 82 (2010) 041107:1-7.
[45] S.-Y. Kim, “Honeycomb-lattice Ising model in a nonzero magnetic field: Low-temperature series analysis and partition function zeros”, Journal of the Korean Physical Society, 56 (2010) 1051-1054.
[46] J. H. Lee, S.-Y. Kim, and J. Lee, “Exact partition function zeros and the collapse transition of a two-dimensional lattice polymer”, Journal of Chemical Physics, 133 (2010) 114106:1-6.
[47] J. H. Lee, H. S. Song, J. M. Kim, and S.-Y. Kim, “Study of a squarelattice Ising superantiferromagnet using the Wang-Landau algorithm and partition function zeros”, Journal of Statistical Mechanics, 10 (2010) P03020:1-9.
[48] C.-O. Hwang and S.-Y. Kim, “Yang-Lee zeros of triangular Ising antiferromagnets”, Physica A, 389 (2010) 5650-5654.
[49] D. Dalmazi and F. L. Sa, “Generalized partition function zeros of 1D spin models and their critical behavior at edge singularities”, Journal of Physics A, 43 (2010) 255002:1-20.
[50] J. H. Lee, S.-Y. Kim, and J. Lee, “Collapse transition of a square-lattice polymer with next nearest-neighbor interaction”, Journal of Chemical Physics, 135 (2011) 204102:1-4.
[51] S.-Y. Kim, “Triangular-lattice Ising model in a nonzero magnetic field”, Journal of the Korean Physical Society, 58 (2011) 5-8.
[52] S.-Y. Kim, “Specific heat and partition function zeros of the three-state Potts model”, Journal of the Korean Physical Society, 59 (2011) 2980- 2983.
[53] J. H. Lee, S.-Y. Kim, and J. Lee, “Exact partition function zeros of a polymer on a simple cubic lattice”, Physical Review E, 86 (2012) 011802:1-7.
[54] J. L. Lebowitz, D. Ruelle, and E. R. Speer, “Location of the Lee-Yang zeros and absence of phase transitions in some Ising spin systems”, Journal of Mathematical Physics, 53 (2012) 095211:1-13.
[55] S.-Y. Kim, “Exact partition functions of the Ising model on L×L square lattices with free boundary conditions up to L = 22”, Journal of the Korean Physical Society, 62 (2013) 214-219.
[56] J. H. Lee, S.-Y. Kim, and J. Lee, “Partition function zeros of a square-lattice homopolymer with nearest- and next-nearest-neighbor interactions”, Physical Review E, 87 (2013) 052601:1-6.
[57] J. Lee, “Exact partition function zeros of the Wako-Saito-Munoz-Eaton protein model”, Physical Review Letters, 110 (2013) 248101:1-5.
[58] Z. Glumac and Uzelac, “Yang-Lee zeros and the critical behavior of the infinite-range two- and three-state Potts models”, Physical Review E, 87 (2013) 022140:1-10.
[59] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.
[60] H. Gould and J. Tobochnik, Statistical and Thermal Physics with Computer Applications, Princeton University Press, Princeton, 2010.
[61] R. Bulirsch and J. Stoer, “Fehlerabsch¨atzungen und extrapolation mit rationalen funktionen bei verfahren vom Richardson-typus”, Numerische Mathematik, 6 (1964) 413-427; “Numerical treatment of ordinary differential equations by extrapolation methods”, Numerische Mathematik, 8 (1966) 1-13.