Search results for: Acoustic imaging
485 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: Terrain classification, acoustic features, autonomous robots, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134484 Classification of Acoustic Emission Based Partial Discharge in Oil Pressboard Insulation System Using Wavelet Analysis
Authors: Prasanta Kundu, N.K. Kishore, A.K. Sinha
Abstract:
Insulation used in transformer is mostly oil pressboard insulation. Insulation failure is one of the major causes of catastrophic failure of transformers. It is established that partial discharges (PD) cause insulation degradation and premature failure of insulation. Online monitoring of PDs can reduce the risk of catastrophic failure of transformers. There are different techniques of partial discharge measurement like, electrical, optical, acoustic, opto-acoustic and ultra high frequency (UHF). Being non invasive and non interference prone, acoustic emission technique is advantageous for online PD measurement. Acoustic detection of p.d. is based on the retrieval and analysis of mechanical or pressure signals produced by partial discharges. Partial discharges are classified according to the origin of discharges. Their effects on insulation deterioration are different for different types. This paper reports experimental results and analysis for classification of partial discharges using acoustic emission signal of laboratory simulated partial discharges in oil pressboard insulation system using three different electrode systems. Acoustic emission signal produced by PD are detected by sensors mounted on the experimental tank surface, stored on an oscilloscope and fed to computer for further analysis. The measured AE signals are analyzed using discrete wavelet transform analysis and wavelet packet analysis. Energy distribution in different frequency bands of discrete wavelet decomposed signal and wavelet packet decomposed signal is calculated. These analyses show a distinct feature useful for PD classification. Wavelet packet analysis can sort out any misclassification arising out of DWT in most cases.
Keywords: Acoustic emission, discrete wavelet transform, partial discharge, wavelet packet analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989483 Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons
Authors: Basudev Ghosh, Sreyasi Banerjee
Abstract:
Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.
Keywords: Ion-acoustic waves, Nonthermal electrons, Sagdeev potential, Solitary waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213482 Milling Chatter Prevention by Adaptive Spindle Speed Tuning
Authors: Nan-Chyuan Tsai, Din-Chang Chen, Rong-Mao Lee, Bai-Lu Wang
Abstract:
This paper presents how the real-time chatter prevention can be realized by feedback of acoustic cutting signal, and the efficacy of the proposed adaptive spindle speed tuning algorithm is verified by intensive experimental simulations. A pair of microphones, perpendicular to each other, is used to acquire the acoustic cutting signal resulting from milling chatter. A real-time feedback control loop is constructed for spindle speed compensation so that the milling process can be ensured to be within the stability zone of stability lobe diagram. Acoustic Chatter Signal Index (ACSI) and Spindle Speed Compensation Strategy (SSCS) are proposed to quantify the acoustic signal and actively tune the spindle speed respectively. By converting the acoustic feedback signal into ACSI, an appropriate Spindle Speed Compensation Rate (SSCR) can be determined by SSCS based on real-time chatter level or ACSI. Accordingly, the compensation command, referred to as Added-On Voltage (AOV), is applied to increase/decrease the spindle motor speed. By inspection on the precision and quality of the workpiece surface after milling, the efficacy of the real-time chatter prevention strategy via acoustic signal feedback is further assured.Keywords: Chatter compensation, Stability lobes, Non-invasivemeasurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714481 Advanced Stochastic Models for Partially Developed Speckle
Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije
Abstract:
Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744480 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.
Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301479 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm
Authors: J. B. Seo, K. J. Kim, S. W. Nam
Abstract:
In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815478 TACS : Thermo Acoustic Cooling System
Authors: Z. Zarid, C. Gamba, A. Brusseaux, C. Laborie, K. Briens
Abstract:
Cooling with sound is a physical phenomenon allowed by Thermo-Acoustics in which acoustic energy is transformed into a negative heat transfer, in other words: into cooling! Without needing any harmful gas, the transformation is environmentally friendly and can respond to many needs in terms of air conditioning, food refrigeration for domestic use, and cooling medical samples for example. To explore the possibilities of this cooling solution on a small scale, the TACS prototype has been designed, consisting of a low cost thermoacoustic refrigerant “pipe” able to lower the temperature by a few degrees. The obtained results are providing an interesting element for possible future of thermo-acoustic refrigeration.Keywords: Domestic Scale Cooling System, Thermoacoustic, Environmental Friendly Refrigeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437477 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech
Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin
Abstract:
The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.Keywords: Speaker identification, acoustic-spectrographic method, non-native speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866476 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array
Authors: Lei Qi, Rongxin Yan, Lichen Sun
Abstract:
With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.
Keywords: Acoustic sensor array, spacecraft, damage assessment, leakage location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121475 Localizing Acoustic Touch Impacts using Zip-stuffing in Complex k-space Domain
Authors: R. Bremananth, Andy W. H. Khong, A. Chitra
Abstract:
Visualizing sound and noise often help us to determine an appropriate control over the source localization. Near-field acoustic holography (NAH) is a powerful tool for the ill-posed problem. However, in practice, due to the small finite aperture size, the discrete Fourier transform, FFT based NAH couldn-t predict the activeregion- of-interest (AROI) over the edges of the plane. Theoretically few approaches were proposed for solving finite aperture problem. However most of these methods are not quite compatible for the practical implementation, especially near the edge of the source. In this paper, a zip-stuffing extrapolation approach has suggested with 2D Kaiser window. It is operated on wavenumber complex space to localize the predicted sources. We numerically form a practice environment with touch impact databases to test the localization of sound source. It is observed that zip-stuffing aperture extrapolation and 2D window with evanescent components provide more accuracy especially in the small aperture and its derivatives.Keywords: Acoustic source localization, Near-field acoustic holography (NAH), FFT, Extrapolation, k-space wavenumber errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648474 Acoustic Instabilities on Swirling Flames
Authors: T. Parra, R. Z. Szasz, C. Duwig, R. Pérez, V. Mendoza, F. Castro
Abstract:
The POD makes possible to reduce the complete high-dimensional acoustic field to a low-dimensional subspace where different modes are identified and let reconstruct in a simple way a high percentage of the variance of the field.
Rotating modes are instabilities which are commonly observed in swirling flows. Such modes can appear under both cold and reacting conditions but that they have different sources: while the cold flow rotating mode is essentially hydrodynamic and corresponds to the wellknown PVC (precessing vortex core) observed in many swirled unconfined flows, the rotating structure observed for the reacting case inside the combustion chamber might be not hydrodynamically but acoustically controlled. The two transverse acoustic modes of the combustion chamber couple and create a rotating motion of the flame which leads to a self-sustained turning mode which has the features of a classical PVC but a very different source (acoustics and not hydrodynamics).
Keywords: Acoustic field, POD, swirling flames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330473 Study Forecast Indoor Acoustics. A Case Study: the Auditorium Theatre-Hotel “Casa Tra Noi“
Authors: D. Germanò, D. Plutino, G. Cannistraro
Abstract:
The theatre-auditorium under investigation following the highly reflective characteristics of materials used in it (marble, painted wood, smooth plaster, etc), architectural and structural features of the Protocol and its intended use (very multifunctional: Auditorium, theatre, cinema, musicals, conference room) from the analysis of the statement of fact made by the acoustic simulation software Ramsete and supported by data obtained through a campaign of acoustic measurements of the state of fact made on the spot by a Fonomet Svantek model SVAN 957, appears to be acoustically inadequate. After the completion of the 3D model according to the specifications necessary software used forecast in order to be recognized by him, have made three simulations, acoustic simulation of the state of and acoustic simulation of two design solutions. Improved noise characteristics found in the first design solution, compared to the state in fact consists therefore in lowering Reverberation Time that you turn most desirable value, while the Indicators of Clarity, the Baricentric Time, the Lateral Efficiency, Ratio of Low Tmedia BR and defined the Speech Intelligibility improved significantly. Improved noise characteristics found instead in the second design solution, as compared to first design solution, is finally mostly in a more uniform distribution of Leq and in lowering Reverberation Time that you turn the optimum values. Indicators of Clarity, and the Lateral Efficiency improve further but at the expense of a value slightly worse than the BR. Slightly vary the remaining indices.Keywords: Indoor, Acoustic, Acoustic simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4195472 Role of Acoustic Pressure on the Dynamics of Moving Single-Bubble Sonoluminescence
Authors: Reza Rezaei-Nasirabad, Zeinab Galavani, Rasoul Sadighi-Bonabi, Mohammad Asgarian
Abstract:
Role of acoustic driving pressure on the translational-radial dynamics of a moving single bubble sonoluminescence (m-SBSL) has been numerically investigated. The results indicate that increase in the amplitude of the driving pressure leads to increase in the bubble peak temperature. The length and the shape of the trajectory of the bubble depends on the acoustic pressure and because of the spatially dependence of the radial dynamics of the moving bubble, its peak temperature varies during the acoustical pulses. The results are in good agreement with the experimental reports on m-SBSL.Keywords: Bubble dynamics, Equation of the gas state, Hydrodynamic force, Moving sonoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786471 Shear-Layer Instabilities of a Pulsed Stack-Issued Transverse Jet
Authors: Ching M. Hsu, Rong F. Huang, Michael E. Loretero
Abstract:
Shear-layer instabilities of a pulsed stack-issued transverse jet were studied experimentally in a wind tunnel. Jet pulsations were induced by means of acoustic excitation. Streak pictures of the smoke-flow patterns illuminated by the laser-light sheet in the median plane were recorded with a high-speed digital camera. Instantaneous velocities of the shear-layer instabilities in the flow were digitized by a hot-wire anemometer. By analyzing the streak pictures of the smoke-flow visualization, three characteristic flow modes, synchronized flapping jet, transition, and synchronized shear-layer vortices, are identified in the shear layer of the pulsed stack-issued transverse jet at various excitation Strouhal numbers. The shear-layer instabilities of the pulsed stack-issued transverse jet are synchronized by acoustic excitation except for transition mode. In transition flow mode, the shear-layer vortices would exhibit a frequency that would be twice as great as the acoustic excitation frequency.Keywords: Acoustic excitation, jet in crossflow, shear-layer instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699470 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror
Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin
Abstract:
The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).
Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938469 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography
Authors: Moung Young Lee, Chul Gyu Song
Abstract:
Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892468 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator
Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi
Abstract:
In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267467 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.
Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461466 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method
Authors: A. Soltani, M. Karimi Demneh
Abstract:
In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.Keywords: Boundary element method, natural frequency, noise, vehicle cabin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547465 Simulations of Cryogenic Cavitation of Low Temperature Fluids with Thermodynamics Effects
Authors: A. Alhelfi, B. Sunden
Abstract:
Cavitation in cryogenic liquids is widely present in contemporary science. In the current study, we re-examine a previously validated acoustic cavitation model which was developed for a gas bubble in liquid water. Furthermore, simulations of cryogenic fluids including the thermal effect, the effect of acoustic pressure amplitude and the frequency of sound field on the bubble dynamics are presented. A gas bubble (Helium) in liquids Nitrogen, Oxygen and Hydrogen in an acoustic field at ambient pressure and low temperature is investigated numerically. The results reveal that the oscillation of the bubble in liquid Hydrogen fluctuates more than in liquids Oxygen and Nitrogen. The oscillation of the bubble in liquids Oxygen and Nitrogen is approximately similar.
Keywords: Cryogenic liquids, cavitation, rocket engineering, ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743464 Characterization and Modeling of Piezoelectric Integrated Micro Speakers for Audio Acoustic Actuation
Authors: J. Mendoza-López, S. Sánchez-Solano, J. L. Huertas-Díaz
Abstract:
An array of piezoelectric micro actuators can be used for radiation of an ultrasonic carrier signal modulated in amplitude with an acoustic signal, which yields audio frequency applications as the air acts as a self-demodulating medium. This application is known as the parametric array. We propose a parametric array with array elements based on existing piezoelectric micro ultrasonic transducer (pMUT) design techniques. In order to reach enough acoustic output power at a desired operating frequency, a proper ratio between number of array elements and array size needs to be used, with an array total area of the order of one cm square. The transducers presented are characterized via impedance, admittance, noise figure, transducer gain and frequency responses.Keywords: Pizeoelectric, Microspeaker, MEMS, pMUT, Parametric Array
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248463 Acoustic Source Localization Based On the Extended Kalman Filter for an Underwater Vehicle with a Pair of Hydrophones
Authors: ByungHoon Kang, Jeawook Shin, Ju-man Song, Hyun-Taek Choi, PooGyeon Park
Abstract:
In this study, we consider a special situation that only a pair of hydrophone on a moving underwater vehicle is available to localize a fixed acoustic source of far distance. The trigonometry can be used in this situation by using two different DOA of different locations. Notice that the distance between the two locations should be measured. Therefore, we assume that the vehicle is sailing straightly and the moving distance for each unit time is measured continuously. However, the accuracy of the localization using the trigonometry is highly dependent to the accuracy of DOAs and measured moving distances. Therefore, we proposed another method based on the extended Kalman filter that gives more robust and accurate localization result.
Keywords: Localization, acoustic, underwater, extended Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197462 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)
Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos
Abstract:
The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.
Keywords: Rotor noise, acoustic tool, GPU Programming, UAV noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058461 On Developing an Automatic Speech Recognition System for Standard Arabic Language
Authors: R. Walha, F. Drira, H. El-Abed, A. M. Alimi
Abstract:
The Automatic Speech Recognition (ASR) applied to Arabic language is a challenging task. This is mainly related to the language specificities which make the researchers facing multiple difficulties such as the insufficient linguistic resources and the very limited number of available transcribed Arabic speech corpora. In this paper, we are interested in the development of a HMM-based ASR system for Standard Arabic (SA) language. Our fundamental research goal is to select the most appropriate acoustic parameters describing each audio frame, acoustic models and speech recognition unit. To achieve this purpose, we analyze the effect of varying frame windowing (size and period), acoustic parameter number resulting from features extraction methods traditionally used in ASR, speech recognition unit, Gaussian number per HMM state and number of embedded re-estimations of the Baum-Welch Algorithm. To evaluate the proposed ASR system, a multi-speaker SA connected-digits corpus is collected, transcribed and used throughout all experiments. A further evaluation is conducted on a speaker-independent continue SA speech corpus. The phonemes recognition rate is 94.02% which is relatively high when comparing it with another ASR system evaluated on the same corpus.Keywords: ASR, HMM, acoustical analysis, acoustic modeling, Standard Arabic language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780460 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression
Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas
Abstract:
Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.
Keywords: Acoustic emission, geomaterial, laser ultrasound, uniaxial compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404459 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274458 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.
Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317457 Monitoring Sand Transport Characteristics in Multiphase Flow in Horizontal Pipelines Using Acoustic Emission Technology
Authors: M. El-Alej, D. Mba, T. Yan, M. Elforgani
Abstract:
This paper presents an experimental investigation using Acoustic Emission (AE) technology to monitor sand transportation in multiphase flow. The investigations were undertaken on three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2msˉ¹ to 2.0msˉ¹ and superficial liquid velocity (VSL) had a range of between 0.2msˉ¹ to 1.0msˉ¹. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG), and superficial liquid velocity (VSL).
Keywords: Acoustic Emission (AE), multiphase flow, sand monitoring, sand minimum transport condition (MTC), condition monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582456 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).
Keywords: Dual Phase Steel, Deformation, Acoustic Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541