Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons
Authors: Basudev Ghosh, Sreyasi Banerjee
Abstract:
Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.
Keywords: Ion-acoustic waves, Nonthermal electrons, Sagdeev potential, Solitary waves.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337161
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219References:
[1] P K Shukla, A A Mamun J.Phys. IV France 5 C6-43(1995).
[2] S I Popel, S V Valmdimirov, P K Shukla Phys. Plasma 2 716 (1995).
[3] Y N Nejoh. Phys. Plasma 3 1447 (1996).
[4] M K Mishra, A. K. Arora and R.S Chhabra, Phys Rev E, 66, 46402 (2002).
[5] S Ghosh, R Bharuthram Astrophys Space Sci 314 ,121 (2008).
[6] H R Pakzad Astrophys Space Sci 323 345 (2009).
[7] H R Miller, P J Witta Active Galactic Nuclei, P. 202 Springer Berlin (1978).
[8] F C Michel Rev Mod Phys. 54 1 (1982).
[9] F C Michel Theory of Neutron star Magnetosphere, Chicago University Press Chicago (1991).
[10] M I Barns Positron electron pairs in Astrophysics, New York: American Institute of Physics (1983).
[11] W K Misner, S Thorne, J A Wheeler Gravitation, P. 763 Freeman San Francisco (1973).
[12] M J Rees, G W Gibbons, S W Hawking, S Siklaseds The Early Universe, Cambridge University Press, Cambridge (1983).
[13] Tandberg, E Hansen, A G Emslie The physics of solar Flares, Cambidge University Press Cambridge 1988 P. 124.
[14] C M Surko, M Leventhal, A Passner Phys. Rev. Lett 62 601 (1989).
[15] H Bochmer, M Adams, N Rynn Phys. of Plasmas 2 4369 (1995).
[16] E P Liang, S C Wilks, M Tabak Phys. Rev Lett 81 4887 (1998).
[17] R A Cairns, A A Mamun, R Bingham, P K Shukla Phys.Scripta 763 80 (1996).
[18] P O Dovner, A I Erikson, R Bostorm, B Holdack Geophys. Res. Lett 21 1827 (1994).
[19] R Bostrom, G Gustafsson, B Holback, G Holmgren, H Koskinen, P Kintner Phys. Rev Lett. 61 82 (1988)
[20] R A Cairns, R Bingham, R O Dendy, C M C Nairn, R Bostrom Geophys. Res. Lett. 22 2709 (1995)
[21] M Salahuddin, H Saleem, M Saddiq Phys. Rev E 66 036407 (2002)
[22] T S Gill, C Bedi, A S Bains Phys. Scr 81 055503 (2010).
[23] T K Balaku, M A Helberg Plasma Phys. and Control Fusion 53 095007 (2011).
[24] G Murtaza and M Salahuddin, Plasma phys. 24 451 (1981).
[25] Yashvir, T N Bhatnagar and S R Sharma, Plasma Phys. and Controlled fusion 26 1303 (1984).
[26] Y N Nejoh. Phys. Plasma 3 1447 (1996).
[27] A A Mamun Phys Rev E 55 1852 (1997).
[28] H R Pakzad Astrophysics Space Sci 323 345 (2009).
[29] A. S Bains, N S Saini, T S Gill Astro Phys. Sci 343, 293 (2013).
[30] B Ghosh, S Banerjee and S N Paul Indian J. Pure and Appl. Phys. 51 488 (2013).