Search results for: three-dimensional mechanical characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3593

Search results for: three-dimensional mechanical characteristics

3053 Symmetry Breaking and the Emergence of Branching Structures in Morphogenesis: Minimal Conditions and Mechanical Interactions between Cells

Authors: M. Margarida Costa, Jorge Simão

Abstract:

The minimal condition for symmetry breaking in morphogenesis of cellular population was investigated using cellular automata based on reaction-diffusion dynamics. In particular, the study looked for the possibility of the emergence of branching structures due to mechanical interactions. The model used two types of cells an external gradient. The results showed that the external gradient influenced movement of cell type-I, also revealed that clusters formed by cells type-II worked as barrier to movement of cells type-I.

Keywords: Morphogenesis, branching structures, symmetrybreaking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
3052 Mechanical Behavior of Geosynthetics vs. the Combining Effect of Aging, Temperature, and Internal Structure

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno

Abstract:

Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them, have been mechanically tested at mild temperature (20 ºC or 23 ºC) and at warm temperature (45 ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45 ºC tests, a heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior has been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.

Keywords: Aging, geosynthetics, internal structure, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14
3051 Design Considerations of Scheduling Systems Suitable for PCB Manufacturing

Authors: Oscar Fernandez-Flores, Tony Speer, Rodney Day

Abstract:

This paper identifies five key design characteristics of production scheduling software systems in printed circuit board (PCB) manufacturing. The authors consider that, in addition to an effective scheduling engine, a scheduling system should be able to process a preventative maintenance calendar, to give the user the flexibility to handle data using a variety of electronic sources, to run simulations to support decision-making, and to have simple and customisable graphical user interfaces. These design considerations were the result of a review of academic literature, the evaluation of commercial applications and a compilation of requirements of a PCB manufacturer. It was found that, from those systems that were evaluated, those that effectively addressed all five characteristics outlined in this paper were the most robust of all and could be used in PCB manufacturing.

Keywords: Decision-making, ERP, PCB, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
3050 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

Authors: Ufaith Qadri, M Marouf Wani

Abstract:

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Keywords: AVL Boost, emissions, micro emulsion, performance, SI engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
3049 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field

Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna

Abstract:

The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.

Keywords: Ejector, diffuser, multiphase flow, syphon effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
3048 A Cognitive Measurement of Complexity and Comprehension for Object-Oriented Code

Authors: Amit Kumar Jakhar, Kumar Rajnish

Abstract:

Inherited complexity is one of the difficult tasks in software engineering field. Further, it is said that there is no physical laws or standard guidelines suit for designing different types of software. Hence, to make the software engineering as a matured engineering discipline like others, it is necessary that it has its own theoretical frameworks and laws. Software designing and development is a human effort which takes a lot of time and considers various parameters for successful completion of the software. The cognitive informatics plays an important role for understanding the essential characteristics of the software. The aim of this work is to consider the fundamental characteristics of the source code of Object-Oriented software i.e. complexity and understandability. The complexity of the programs is analyzed with the help of extracted important attributes of the source code, which is further utilized to evaluate the understandability factor. The aforementioned characteristics are analyzed on the basis of 16 C++ programs by distributing them to forty MCA students. They all tried to understand the source code of the given program and mean time is taken as the actual time needed to understand the program. For validation of this work, Briand’s framework is used and the presented metric is also evaluated comparatively with existing metric which proves its robustness.

Keywords: Software metrics, object-oriented, complexity, cognitive weight, understandability, basic control structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
3047 Quality Characterization of Burger Affected by Soybean Additives (Natto & Protein Hydrolysate) and Ascorbic Acid

Authors: Marwa H. Mahmoud, Ferial M. Abu-Salem

Abstract:

Soy protein is a common ingredient added to processed meats to enhance its functional characteristics. In our study, soybean products (fermented soy Natto and protein hydrolysate) containing hydrolyzed peptides and amino acids, with or without ascorbic acid were added to burger in order to improve its quality characteristics. Results showed that soy additives significantly increased moisture and protein content and reduced (P < 0.05) fat values. Ash content did not affect with Natto additive. Color tools, lightness and yellowness were higher (P<0.05) for the samples with added soybean products (with or without ascorbic acid), while redness decreased. Both of protein hydrolysate and ascorbic acid increased the softiness while, Natto additive increased the hardness of samples. Natto & protein hydrolysate additives increased the total volatile basic nitrogen while, samples with ascorbic acid decreased TVBN values at significant levels. Also, soy additives were improved both of cooking quality and sensory evaluation of the burger in order to prove that soy products actually affect the quality characteristics of meat products.

Keywords: Burger, protein hydrolysate, fermented soy Natto, quality characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
3046 Static Modeling of the Delamination of a Composite Material Laminate in Mode II

Authors: Y. Madani, H. Achache, B. Boutabout

Abstract:

The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.

Keywords: Delamination, energy release rate, finite element method, stratified composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
3045 Green Building Materials: Hemp Oil Based Biocomposites

Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan

Abstract:

Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.

Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3466
3044 Development of New Cooling System using Nacelle Duct

Authors: Minho Ha, SeungHeo, Cheolung Cheong, Park K. Y.

Abstract:

In this paper, a new cooling system using a nacelle duct is proposed for the mechanical room in the household refrigerator. The conventional mechanical room consists of a condenser, a compressor and an axial fan. The axial fan is mainly responsible for cooling the condenser and the compressor. The new cooling system is developed by replacing the axial fan with the nacelle duct including the small centrifugal fan. The parametric study is carried out to find the optimum designs of the nacelle duct in terms of performance and efficiency. Through this study, it is revealed that the new system can reduce the space, electrical power and noise compared with the conventional system

Keywords: Centrifugal Fan, Cooling Fan, Nacelle Duct, Refrigerator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
3043 Development and Characterization of Bio-Tribological, Nano-Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio-tribological, multilayer coatings opens an avenue for fabrication of future hightech functional surfaces. In the presented work, nano-composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nanomultilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio-tribological properties of the coatings was studied. The bio-tests were used as a screening tool for the analyzed nanomultilayer coatings before they could be deposited on medical tools. Bio-medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-ondisc mechanical test. The micro hardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio-tribological point of view, the optimal properties had the C106_1 material.

Keywords: Bio-tribological coatings, cell-material interaction, hybrid PLD, tribology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
3042 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.

Keywords: 3D printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
3041 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties

Authors: M. N. Othman, M. Bukhari, Z. Halim, S. A. Mohammad, K. Khalid

Abstract:

Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 GPa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.

Keywords: Aluminium, kenaf fiber epoxy, sandwich structure composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
3040 Thermal and Mechanical Properties of Basalt Fibre Reinforced Concrete

Authors: Tumadhir M., Borhan

Abstract:

In this study, the thermal and mechanical properties of basalt fibre reinforced concrete were investigated. The volume fractions of basalt fibre of (0.1, 0.2, 0.3, and 0.5% by total mix volume) were used. Properties such as heat transfer, compressive and splitting tensile strengths were examined. Results indicated that the strength increases with increase the fibre content till 0.3% then there is a slight reduction when 0.5% fibre used. Lower amount of heat conducted through the thickness of concrete specimens than the conventional concrete was also recorded.

Keywords: Chopped basalt fibre, Compressive strength, Splitting tensile strength, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5907
3039 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

Authors: Mohammad Talha, B. N. Singh

Abstract:

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
3038 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer

Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu

Abstract:

In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).

Keywords: Biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
3037 Mineral Activator and Physical Characteristics of Slag Cement at Anhydrous and Hydrated States

Authors: A. Naceri, M. S. Bouglada, P. Grosseau

Abstract:

The setting agent Ca(OH)2 for activation of slag cement is used in the proportions of 0%, 2%, 4%, 6%, 8% and 10% by various methods (substitution and addition by mass of slag cement). The physical properties of slag cement activated by the calcium hydroxide at anhydrous and hydrated states (fineness, particle size distribution, consistency of the cement pastes and setting times) were studied. The activation method by the mineral activator of slag cement (latent hydraulicity) accelerates the hydration process and reduces the setting times of the cement activated.

Keywords: Mineral activator, slag cement, Anhydrous and hydrated states, physical characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
3036 Friction Stir Welded Joint Aluminum Alloy H20-H20 with Different Type of Tools Mechanical Properties

Authors: Omid A. Zargar

Abstract:

In this project three type of tools, straight cylindrical, taper cylindrical and triangular tool all made of High speed steel (Wc-Co) used for the friction stir welding (FSW) aluminum alloy H20–H20 and the mechanical properties of the welded joint tested by tensile test and vicker hardness test. Besides, mentioned mechanical properties compared with each other to make conclusion. The result helped design of welding parameter optimization for different types of friction stir process like rotational speed, depth of welding, travel speed, type of material, type of joint, work piece dimension, joint dimension, tool material and tool geometry. Previous investigations in different types of materials work pieces; joint type, machining parameter and preheating temperature take placed. In this investigation 3 mentioned tool types that are popular in FSW tested and the results completed other aspects of the process. Hope this paper can open a new horizon in experimental investigation of mechanical properties for friction stir welded joint with other different type of tools like oval shape probe, paddle shape probe, three flat sided probe, and three sided re-entrant probe and other materials and alloys like titanium or steel in near future.

Keywords: Friction stir welding (FSW), tool, CNC milling machine, aluminum alloy H20, Vickers hardness test, tensile test, straight cylindrical tool, taper cylindrical tool, triangular tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
3035 Investigation on Fluid Flow and Heat Transfer Characteristics in Spray Cooling Systems Using Nanofluids

Authors: D. H. Lee, Nur Irmawati

Abstract:

This paper aims to study the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.

Keywords: Numerical simulation, Spray cooling, Heat transfer, Nanofluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
3034 A Quantitative Tool for Analyze Process Design

Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río

Abstract:

Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.

Keywords: Characteristics matrix, covariance structure analysis, LISREL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
3033 Load Modeling for Power Flow and Transient Stability Computer Studies at BAKHTAR Network

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

A method has been developed for preparing load models for power flow and stability. The load modeling (LOADMOD) computer software transforms data on load class mix, composition, and characteristics into the from required for commonly–used power flow and transient stability simulation programs. Typical default data have been developed for load composition and characteristics. This paper defines LOADMOD software and describes the dynamic and static load modeling techniques used in this software and results of initial testing for BAKHTAR power system.

Keywords: Load Modelling, Static, Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
3032 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong

Abstract:

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Keywords: Travel characteristics analysis, transportation choice, travel sharing rate, neural network model, traffic resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606
3031 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures

Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal

Abstract:

The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.

Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
3030 Effect of Laser Welding Properties on Ti/Al Dissimilar Thin Sheets – A Review

Authors: K. Kalaiselvan, A. Elango, N.M. Nagarajan

Abstract:

Laser beam welding is an important joining technique for Titanium/Aluminum thin sheet alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. In this paper the research and progress in laser welding of Ti/Al thin sheets are critically reviewed from different perspectives. Some important aspects such as microstructure, metallurgical defects and mechanical properties in weldments are discussed. Also the recent progress in laser welding of Ti/Al dissimilar thin sheets to provide a basis for further research work is reported.

Keywords: Laser welding, Titanium/Aluminium sheets, microstructure, metallurgical defects and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3497
3029 Regeneration of Spent Catalysts with Ozone

Authors: Jyh-Cherng Chen, Chang-Yong Liu

Abstract:

This study investigates the in-situ regeneration of deactivated Pt-Pd catalyst in a laboratory-scale catalysis reactor. Different regeneration conditions are tested and the activity and characteristics of regenerated catalysts are analyzed. Experimental results show that the conversion efficiencies of C3H6 by different regenerated Pt-Pd catalysts were significantly improved from 77%, 55% and 41% to 86%, 98% and 99%, respectively. The best regeneration conditions was 52ppm ozone, 500oC, and 10min. Regeneration temperature has more influences than ozone concentration and regeneration time. With the comparisons of characteristics of deactivated catalyst and regenerated catalyst, the major poison species (carbon, metals, chloride, and sulfate) on the spent catalysts can be effectively removed by ozone regeneration. 

Keywords: Catalyst, deactivated, ozone, regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
3028 An Antibacterial Dental Restorative Containing 3,4-Dichlorocrotonolactone: Synthesis, Formulation and Evaluation

Authors: Dong Xie, Leah Howard, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize 5-acryloyloxy-3,4-dichlorocrotonolactone (a furanone derivative), use this derivative to modify a dental restorative, and study the effect of the derivative on the antibacterial activity and compressive strength of the formed restorative. In this study, a furanone derivative was synthesized, characterized, and used to formulate a dental restorative. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed restorative. The fabricated restorative specimens were photocured and conditioned in distilled water at 37oC for 24 h, followed by direct testing for CS or/and incubating with S. mutans for 48 h for antibacterial testing. The results show that the modified dental restorative showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With addition of the antibacterial derivative up to 30%, the restorative kept its original CS nearly unchanged but showed a significant antibacterial activity with 68% reduction in the S. mutans viability. Furthermore, the antibacterial function of the modified restorative was not affected by human saliva. The aging study also indicates that the modified restorative may have a long-lasting antibacterial function. It is concluded that this experimental antibacterial restorative may potentially be developed into a clinically attractive dental filling restorative due to its high mechanical strength and antibacterial function.

Keywords: Antibacterial, dental filling restorative, compressive strength, S. mutans viability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
3027 Effect of Friction Stir Welding on Microstructural and Mechanical Properties of Copper Alloy

Authors: Dhananjayulu Avula, Ratnesh Kumar Raj Singh, D.K.Dwivedi, N.K.Mehta

Abstract:

This study demonstrates the feasibility of joining the commercial pure copper plates by friction stir welding (FSW). Microstructure, microhardness and tensile properties in terms of the joint efficiency were found 94.03 % compare to as receive base material (BM). The average hardness at the top was higher than bottom. Hardness of weld zone was higher than the base material. Different microstructure zones were revealed by optical microscopy and scanning electron microscopy. The stirred zone (SZ) exhibited primary two phases namely, recrystallized grains and fine precipitates in matrix of copper.

Keywords: Welding; FSW, Commercial Copper, Mechanical properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4536
3026 Statistical Analysis of Stresses in Rigid Pavement

Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela

Abstract:

Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.

Keywords: concrete, FEM, pavement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
3025 Advantages of Vibration in the GMAW Process for Improving the Quality and Mechanical Properties

Authors: C. A. C. Castro, D. C. Urashima, E. P. Silva, P. M. L.Silva

Abstract:

Since 1920, the industry has almost completely changed the rivets production techniques for the manufacture of permanent welding join production of structures and manufacture of other products. The welding arc is the process more widely used in industries. This is accomplished by the heat of an electric arc which melts the base metal while the molten metal droplets are transferred through the arc to the welding pool, protected from the atmosphere by a gas curtain. The GMAW (Gas metal arc welding) process is influenced by variables such as: current, polarity, welding speed, electrode: extension, position, moving direction; type of joint, welder's ability, among others. It is remarkable that the knowledge and control of these variables are essential for obtaining satisfactory quality welds, knowing that are interconnected so that changes in one of them requiring changes in one or more of the other to produce the desired results. The optimum values are affected by the type of base metal, the electrode composition, the welding position and the quality requirements. Thus, this paper proposes a new methodology, adding the variable vibration through a mechanism developed for GMAW welding, in order to improve the mechanical and metallurgical properties which does not affect the ability of the welder and enables repeatability of the welds made. For confirmation metallographic analysis and mechanical tests were made.

Keywords: HAZ, GMAW, vibration, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
3024 Mechanical Properties of Ordinary Portland Cement Modified Cold Bitumen Emulsion Mixture

Authors: Hayder Kamil Shanbara, Felicite Ruddock, William Atherton, Nassier A. Nassir

Abstract:

Cold bitumen emulsion mixture (CBEM) offers a series benefits as compared with hot mix asphalt (HMA); these include environmental factors, energy saving, the resolution of logistical challenges that can characterise hot mix, and the potential to reserve funds. However, this mixture has some problems similar to any bituminous mixtures as it has low early strength, long curing time that needed to obtain the maximum performance, high air voids and considered inferior to HMA. Thus, CBEM has been used in limited applications such as lightly trafficked roads, footways and reinstatements. This laboratory study describes the development of CBEM using ordinary Portland cement (OPC) instead of the traditional mineral filler. Stiffness modulus, moisture damage and temperature sensitivity tests were used to evaluate the mechanical properties of the produced mixtures. The study concluded that there is a substantial improvement in the mechanical properties and moisture damage resistance of CBEMs containing OPC. Also, the produced cement modified CBEM shows a considerable lower thermal sensitivity than the conventional CBEM.

Keywords: Cold bitumen emulsion mixture, moisture damage, OPC, stiffness modulus, temperature sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104