Search results for: slag cement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 361

Search results for: slag cement

361 Mineral Activator and Physical Characteristics of Slag Cement at Anhydrous and Hydrated States

Authors: A. Naceri, M. S. Bouglada, P. Grosseau

Abstract:

The setting agent Ca(OH)2 for activation of slag cement is used in the proportions of 0%, 2%, 4%, 6%, 8% and 10% by various methods (substitution and addition by mass of slag cement). The physical properties of slag cement activated by the calcium hydroxide at anhydrous and hydrated states (fineness, particle size distribution, consistency of the cement pastes and setting times) were studied. The activation method by the mineral activator of slag cement (latent hydraulicity) accelerates the hydration process and reduces the setting times of the cement activated.

Keywords: Mineral activator, slag cement, Anhydrous and hydrated states, physical characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
360 Estimation of OPC, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method

Authors: Suresh Palla, Suresh Vanguri, Anitha, B. N. Mohapatra

Abstract:

This paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by selective dissolution method. Types of cement samples investigated include Ordinary Portland Cement (OPC) with fly ash as performance improver, OPC with slag as performance improver, Portland Pozzolana Cement (PPC), Portland Slag Cement (PSC) and composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement is dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this selective dissolution method can be successfully used for estimation of OPC and Supplementary Cementitious material (SCM) contents in different types of cements.

Keywords: Selective dissolution method, fly ash, Ground Granulated blast furnace slag, EDTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329
359 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as ground granulated blast-furnace slag (GGBFS) and limestone to replace Portland cement (PC) is a promising method to reduce the carbon emissions from cement production. To efficiently use GGBFS and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., No.1 fine GGBFS, medium PC, and coarse limestone; No.2 fine limestone, medium PC, and coarse GGBFS; No.3. fine PC, medium GGBFS, and coarse limestone. The binder contents in the ternary cements were 50% PC, 40% slag, and 10% limestone. The mortar performance of the three ternary cements was investigated in terms of flow table value, strength at 28 days, carbonation resistance and non-steady state chloride migration resistance at 28 days. Results show that ternary cement with fine limestone (No.2) has the weakest performance among the three ternary cements. Ternary cements with fine slag (No.1) show an overall comparable performance to ternary cement with fine PC (No.3). Moreover, the chloride migration coefficient of ternary cements with fine slag (No.1) is significantly lower than the other two ternary cements.

Keywords: Limestone, particle size distribution, slag, ternary cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260
358 Effect of Local Steel Slag as a Coarse Aggregate on Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitutes of crashed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of crashed stone. This paper reports the experimental study to investigate the influence of a hundred replacement of crashed stone as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless, the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: Geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
357 Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag

Authors: Bing Song, Kexi Han, Xuewei Lv

Abstract:

Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti3+during different cooling ways. The Ti2O3 content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti2O3 content in granulated slag is decreased about 27.6%. The content of Fe2O3 in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti3+. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%.

Keywords: Cooling approaches, titania slag, granulating, sulfuric acid acidolysis,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
356 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature

Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy

Abstract:

Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.

Keywords: Fly ash, geopolymer, potassium silicate, room temperature treatment, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
355 Soil Improvement using Cement Dust Mixture

Authors: Mohie Eldin Mohamed Afifiy Elmashad

Abstract:

Day by day technology increases and problems associated with this technology also increase. Several researches were carried out to investigate the deployment of such material safely in geotechnical engineering in particular and civil engineering in general. However, different types of waste material have such as cement duct, fly ash and slag been proven to be suitable in several applications. In this research cement dust mixed with different percentages of sand will be used in some civil engineering application as will be explained later in this paper throughout filed and laboratory test. The used mixer (waste material with sand) prove high performance, durability to environmental condition, low cost and high benefits. At higher cement dust ratio, small cement ratio is valuable for compressive strength and permeability. Also at small cement dust ratio higher cement ratio is valuable for compressive strength.

Keywords: cement dust, cement, soil improvement, permeability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
354 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date

Abstract:

To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min.  In addition, the optimum addition time of SP to mortar should be in this period.

Keywords: Combined effect, delayed addition, heat stimulation, flow of mortar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 797
353 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: Blast furnace iron slag, HMA, Marshall/stiffness, indirect tensile strength, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
352 Investigation of the Recycling of Geopolymer Cement Wastes as Fine Aggregates in Mortar Mixes

Authors: Napoleana-Anna Chaliasou, Andrew Heath, Kevin Paine

Abstract:

Fly ash-slag based Geopolymer Cement (GPC) is presenting mechanical properties and environmental advantages that make it the predominant “green” alternative to Portland Cement (PC). Although numerous life-cycle analyses praising its environmental advantages, disposal after the end of its life remains as an issue that has been barely explored. The present study is investigating the recyclability of fly ash-slag GPC as aggregate in mortars. The purpose of the study was to evaluate the effect of GPC fine Recycled Aggregates (RA), at replacement levels of 25% and 50%, on the main mechanical properties of PC and GPC mortar mixes. The results were compared with those obtained by corresponding mixes incorporating natural and PC-RA. The main physical properties of GPC-RA were examined and proven to be comparable to those of PC-RA and slightly inferior to those of natural sand. A negligible effect was observed at 28-day compressive and flexural strength of PC mortars with GPC aggregates having a milder effect than PC. As far as GPC mortars are concerned, the influence of GPC aggregates was enhancing for the investigated mechanical properties. Additionally, a screening test showed that recycled geopolymer aggregates are not prone of inducing alkali silica reaction.

Keywords: Concrete recycling, geopolymer cement, recycled concrete aggregates, sustainable concrete technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
351 The Influence of Physical-Mechanical and Thermal Properties of Hemp Filling Materials by the Addition of Energy Byproducts

Authors: Sarka Keprdova, Jiri Bydzovsky

Abstract:

This article describes to what extent the addition of energy by-products into the structures of the technical hemp filling materials influence their properties. The article focuses on the changes in physical-mechanical and thermal technical properties of materials after the addition of ash or FBC ash or slag in the binding component of material. Technical hemp filling materials are made of technical hemp shives bonded by the mixture of cement and dry hydrate lime. They are applicable as fillers of vertical or horizontal structures or roofs. The research used eight types of energy by-products of power or heating plants in the Czech Republic. Secondary energy products were dispensed in three different percentage ratios as a replacement of cement in the binding component. Density, compressive strength and determination of the coefficient of thermal conductivity after 28, 60 and 90 days of curing in a laboratory environment were determined and subsequently evaluated on the specimens produced.

Keywords: Ash, binder, cement, energy by-product, FBC ash (fluidized bed combustion ash), filling materials, shives, slag, technical hemp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
350 Freeze-Thaw Resistance of Concretes with BFSA

Authors: Alena Sicakova

Abstract:

Air-cooled Blast Furnace Slag Aggregate (BFSA) is usually referred to as a material providing for unique properties of concrete. On the other hand, negative influences are also presented in many aspects. The freeze-thaw resistance of concrete is dependent on many factors, including regional specifics and when a concrete mix is specified it is still difficult to tell its exact freeze-thaw resistance due to the different components affecting it. An important consideration in working with BFSA is the granularity and whether slag is sorted or not. The experimental part of the article represents a comparative testing of concrete using both the sorted and unsorted BFSA through the freeze-thaw resistance as an indicator of durability. Unsorted BFSA is able to be successfully used for concretes as they are specified for exposure class XF4 with providing that the type of cement is precisely selected.

Keywords: Blast furnace slag aggregate, concrete, freeze-thaw resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
349 Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar

Authors: G. S. Ryu, K. T. Koh, H. Y. Kim, G. H. An, D. W. Seo

Abstract:

Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations.

Keywords: Alkali-activated material, blast furnace slag, fly ash, Flowability, strength development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
348 In-situ LDH Formation of Sodium Aluminate Activated Slag

Authors: Tao Liu, Qingliang Yu, H. J. H. Brouwers

Abstract:

Among the reaction products in the alkali activated ground granulated blast furnace slag (AAS), the layered double hydroxides (LDHs) have a remarkable capacity of chloride and heavy metal ions absorption. The promotion of LDH phases in the AAS matrix can increase chloride resistance. The objective of this study is that using the different dosages of sodium aluminate to activate slag, consequently, promoting the formation of in-situ LDH. The hydration kinetics of the sodium aluminate activated slag (SAAS) was tested by the isothermal calorimetry. Meanwhile, the reaction products were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The sodium hydroxide activated slag is selected as the reference. The results of XRD, TGA, and FTIR showed that the formation of LDH in SAAS is governed by the aluminate dosages.

Keywords: ground granulated blast furnace slag, sodium aluminate activated slag, in-situ LDH formation, chloride absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410
347 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: Direct shear, shear strength, slag, UU test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
346 Early-Age Structural and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I cement replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: GGBS, thermal effect, sustainable construction, CEM I.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3117
345 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
344 Utilization of EAF Reducing Slag from Stainless Steelmaking Process as a Sorbent for CO2

Authors: M. N. N. Hisyamudin, S. Yokoyama, M. Umemoto

Abstract:

In this study, an experimental investigation was carried out to fix CO2 into the electronic arc furnace (EAF) reducing slag from stainless steelmaking process under wet grinding. The slag was ground by the vibrating ball mill with the CO2 and pure water. The reaction behavior was monitored with constant pressure method, and the change of CO2 volume in the experimental system with grinding time was measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption under wet grinding was significantly larger than that under dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, the amount of slag, the diameter of alumina ball and the initial pressure of CO2 increased. However, the initial absorption rate was scarcely influenced by the experimental conditions except for the initial CO2 pressure. According to this research, the CO2 reacted with the CaO inside the slag to form CaCO3.

Keywords: CO2 absorption, EAF reducing slag, vibration ball mill, wet grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
343 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete

Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir

Abstract:

Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.

Keywords: Concrete, conductance, deterioration, freezing and thawing, ordinary Portland cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
342 Experimental Study of Steel Slag Used as Aggregate in Asphalt Mixture

Authors: Magdi M. E. Zumrawi, Faiza O. A. Khalill

Abstract:

Steel slag is a by-product of the steel industry and can be used potentially as aggregate in the asphalt mixture. This study evaluates the use of Steel Slag Aggregates (SSA) as a substitute for natural aggregates in the production of hot mix asphalt (HMA) for road construction. Based on intensive laboratory testing program, the characteristic properties of SSA were assessed to determine its suitability to be used in HMA. Four different percentages (0, 50, 75, and 100%) of SSA were used, and the proposed mix designs for HMA were conducted in accordance with Marshall mix design. The experiment results revealed that the addition of SSA has a significant improvement on the properties of HMA. An increase in density and stability and a reduction in flow and air voids values were clearly observed in specimens prepared with 100% SSA. It is concluded that the steel slag can be considered reasonable alternative source of aggregate for concrete asphalt mixture production.

Keywords: Aggregate, asphalt mixture, stability, steel slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3204
341 Utilization of Industrial Byproducts in Concrete Applications by Adopting Grey Taguchi Method for Optimization

Authors: V. K. Bansal, M. Kumar, P. P. Bansal, A. Batish

Abstract:

This paper presents the results of an experimental investigation carried out to evaluate the effects of partial replacement of cement and fine aggregate with industrial waste by-products on concrete strength properties. The Grey Taguchi approach has been used to optimize the mix proportions for desired properties. In this research work, a ternary combination of industrial waste by-products has been used. The experiments have been designed using Taguchi's L9 orthogonal array with four factors having three levels each. The cement was partially replaced by ladle furnace slag (LFS), fly ash (FA) and copper slag (CS) at 10%, 25% and 40% level and fine aggregate (sand) was partially replaced with electric arc furnace slag (EAFS), iron slag (IS) and glass powder (GP) at 20%, 30% and 40% level. Three water to binder ratios, fixed at 0.40, 0.44 and 0.48, were used, and the curing age was fixed at 7, 28 and 90 days. Thus, a series of nine experiments was conducted on the specimens for water to binder ratios of 0.40, 0.44 and 0.48 at 7, 28 and 90 days of the water curing regime. It is evident from the investigations that Grey Taguchi approach for optimization helps in identifying the factors affecting the final outcomes, i.e. compressive strength and split tensile strength of concrete. For the materials and a range of parameters used in this research, the present study has established optimum mixes in terms of strength properties. The best possible levels of mix proportions were determined for maximization through compressive and splitting tensile strength. To verify the results, the optimal mix was produced and tested. The mixture results in higher compressive strength and split tensile strength than other mixes. The compressive strength and split tensile strength of optimal mixtures are also compared with the control concrete mixtures. The results show that compressive strength and split tensile strength of concrete made with partial replacement of cement and fine aggregate is more than control concrete at all ages and w/c ratios. Based on the overall observations, it can be recommended that industrial waste by-products in ternary combinations can effectively be utilized as partial replacements of cement and fine aggregates in all concrete applications.

Keywords: Analysis of variance, ANOVA, compressive strength, concrete, grey Taguchi method, industrial by-products, split tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
340 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: Compressive strength, GGBS, normal concrete, self-consolidating concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
339 Absorption of CO2 in EAF Reducing Slag from Stainless Steel Making Process by Wet Grinding

Authors: B.M.N. Nik Hisyamudin, S. Yokoyama, M. Umemoto

Abstract:

In the current study, we have conducted an experimental investigation on the utilization of electronic arc furnace (EAF) reducing slag for the absorption of CO2 via wet grinding method. It was carried out by various grinding conditions. The slag was ground in the vibrating ball mill in the presence of CO2 and pure water under ambient temperature. The reaction behavior was monitored with constant pressure method, and the changes of experimental systems volume as a function of grinding time were measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption was significantly increased in the case of wet grinding compare to the dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, weight of slag and initial pressure increased. However, it was decreased when the amount of water exceeds 200ml and when smaller balls were used. The absorption of CO2 occurred simultaneously with the start of the grinding and it stopped when the grinding was stopped. According to this research, the CO2 reacted with the CaO inside the slag, forming CaCO3.

Keywords: CO2 absorption, EAF reducing slag, vibration ball mill, wet grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
338 The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash

Authors: Ali Shubbar, Hassnen M. Jafer, Anmar Dulaimi, William Atherton, Ali Al-Rifaie

Abstract:

This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere.

Keywords: Cementitious material, compressive strength, GGBS, HCFA, OPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
337 Synthesis of Aragonite Superstructure from Steelmaking Slag via Indirect CO2 Mineral Sequestration

Authors: Weijun Bao, Huiquan Li

Abstract:

Using steelmaking slag as a raw material, aragonite superstructure product had been synthesized via an indirect CO2 mineral sequestration rout. It mainly involved two separate steps, in which the element of calcium is first selectively leached from steelmaking slag by a novel leaching media consisting of organic solvent Tributyl phosphate (TBP), acetic acid, and ultra-purity water, followed by enhanced carbonation in a separate step for aragonite superstructure production as well as efficiency recovery of leaching media. Based on the different leaching medium employed in the steelmaking slag leaching process, two typical products were collected from the enhanced carbonation step. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. It reveals that the needle-like aragonite crystals self-organized into aragonite superstructure particles including aragonite microspheres as well as dumbbell-like spherical particles, can be obtained from the steelmaking slag with the purity over 99%.

Keywords: Aragonite superstructure, Steelmaking slag, Indirect CO2 mineral sequestration, Selective leaching, Enhanced carbonation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
336 Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete

Authors: Muhammet M. Erdem, Erdoğan Özbay, Ibrahim H. Durmuş, Mustafa Erdemir, Murat Bikçe, Müzeyyen Balçıkanlı

Abstract:

In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO2/Na2O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed.

Keywords: Alkali activation, slag, rheology, yield stress, plastic viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
335 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag

Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker

Abstract:

Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.

Keywords: Hemp, hempcrete, acoustic absorption, GGBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
334 Effect of Cooling Rate on base Metals Recovery from Copper Matte Smelting Slags

Authors: N. Tshiongo , R K.K. Mbaya , K Maweja, L.C. Tshabalala

Abstract:

Slag sample from copper smelting operation in a water jacket furnace from DRC plant was used. The study intends to determine the effect of cooling in the extraction of base metals. The cooling methods investigated were water quenching, air cooling and furnace cooling. The latter cooling ways were compared to the original as received slag. It was observed that, the cooling rate of the slag affected the leaching of base metals as it changed the phase distribution in the slag and the base metals distribution within the phases. It was also found that fast cooling of slag prevented crystallization and produced an amorphous phase that encloses the base metals. The amorphous slags from the slag dumps were more leachable in acidic medium (HNO3) which leached 46%Cu, 95% Co, 85% Zn, 92% Pb and 79% Fe with no selectivity at pH0, than in basic medium (NH4OH). The leachability was vice versa for the modified slags by quenching in water which leached 89%Cu with a high selectivity as metal extractions are less than 1% for Co, Zn, Pb and Fe at ambient temperature and pH12. For the crystallized slags, leaching of base metals increased with the increase of temperature from ambient temperature to 60°C and decreased at the higher temperature of 80°C due to the evaporation of the ammonia solution used for basic leaching, the total amounts of base metals that were leached in slow cooled slags were very low compared to the quenched slag samples.

Keywords: copper slag, leaching, amorphous, cooling rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3706
333 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.

Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
332 Micro Environmental Concrete

Authors: M.Lanez, M.N.Oudjit, A.Bali

Abstract:

Reactive powder concretes (RPC) are characterized by particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial, as well as a final, high physicomechanical performance. To achieve this, we replaced the Portland cement (15% by weight) by materials rich in Silica (Slag and Dune Sand). The results obtained from tests carried out on RPC show that compressive and tensile strengths increase when adding the additions, thus improving the compactness of mixtures via filler and pozzolanic effect. With a reduction of the aggregate phase in the RPC and the abundance of dune sand (south Algeria) and slag (industrial byproduct of blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

Keywords: High mechanical strength, Reactive Powder Concrete, rheology, superplasticizer, workability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479