Search results for: Upper Zone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 779

Search results for: Upper Zone

239 Numerical Simulation of the Liquid-Vapor Interface Evolution with Material Properties

Authors: Kimou Kouadio Prosper, Souleymane Oumtanaga, Tety Pierre, Adou Kablan Jérôme

Abstract:

A satured liquid is warmed until boiling in a parallelepipedic boiler. The heat is supplied in a liquid through the horizontal bottom of the boiler, the other walls being adiabatic. During the process of boiling, the liquid evaporates through its free surface by deforming it. This surface which subdivides the boiler into two regions occupied on both sides by the boiled liquid (broth) and its vapor which surmounts it. The broth occupying the region and its vapor the superior region. A two- fluids model is used to describe the dynamics of the broth, its vapor and their interface. In this model, the broth is treated as a monophasic fluid (homogeneous model) and form with its vapor adiphasic pseudo fluid (two-fluid model). Furthermore, the interface is treated as a zone of mixture characterized by superficial void fraction noted α* . The aim of this article is to describe the dynamics of the interface between the boiled fluid and its vapor within a boiler. The resolution of the problem allowed us to show the evolution of the broth and the level of the liquid.

Keywords: Two-fluid models, homogeneous model, interface, averaged equations, Jumps conditions, void fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
238 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3

Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
237 Strengthening of RC Beams Containing Large Opening at Flexure with CFRP laminates

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

This paper presents the study of strengthening R/C beams with large circular and square opening located at flexure zone by Carbon Fiber Reinforced Polymer (CFRP) laminates. A total of five beams were tested to failure under four point loading to investigate the structural behavior including crack patterns, failure mode, ultimate load and load deflection behaviour. Test results show that large opening at flexure reduces the beam capacity and stiffness; and increases cracking and deflection. A strengthening configuration was designed for each un-strengthened beams based on their respective crack patterns. CFRP laminates remarkably restore the beam capacity of beam with large circular opening at flexure location while 10% re-gain of beam capacity with square opening. The use of CFRP laminates with the designed strengthening configuration could significantly reduce excessive cracking and deflection and increase the ultimate capacity and stiffness of beam.

Keywords: CFRP, large opening, R/C beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3776
236 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate

Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom

Abstract:

The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.

Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
235 Stresses in Cast Metal Inlays Restored Molars

Authors: Sandu L., Topală F., Porojan S.

Abstract:

Cast metal inlays can be used on molars requiring a class II restoration instead amalgam and offer a durable alternative. Because it is known that class II inlays may increase the susceptibility to fracture, it is important to ensure optimal performance in selection of the adequate preparation design to reduce stresses in teeth structures and also in the restorations. The aim of the study was to investigate the influence of preparation design on stress distribution in molars with different class II preparations and in cast metal inlays. The first step of the study was to achieve 3D models in order to analyze teeth and cast metal class II inlays. The geometry of the intact tooth was obtained by 3D scanning using a manufactured device. With a NURBS modeling program the preparations and the appropriately inlays were designed. 3D models of first upper molars of the same shape and size were created. Inlay cavities designs were created using literature data. The geometrical model was exported and the mesh structure of the solid 3D model was created for structural simulations. Stresses were located around the occlusal contact areas. For the studied cases, the stress values were not significant influenced by the taper of the preparation. it was demonstrated stresses are higher in the cast metal restorations and therefore the strength of the teeth is not affected.

Keywords: cast metal inlays, class II restoration, molars, 3D models, structural simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
234 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India

Authors: N. K. Ambujam, V. Sudha

Abstract:

Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.

Keywords: Hyper-eutrophication, Krishnagiri reservoir, nutrients, NPS pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
233 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study

Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das

Abstract:

Rotary entrainment is a phenomenon in which the interface of two immiscible fluids are subjected to external flux by means of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles has been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.

Keywords: Entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
232 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
231 Migration and Accumulation of Artificial Radionuclides in the System Water-Soil-Plants Depending on Polymers Applying

Authors: Anna H. Tadevosyan, Stepan K. Mayrapetyan, Michael P. Schellenberg, Laura M. Ghalachyan, Albert H. Hovsepyan, Khachatur S. Mayrapetyan

Abstract:

The possibility of radionuclides-related contamination of lands at agricultural holdings defines the necessity to apply special protective measures in plant growing. The aim of researches is to elucidate the influence of polymers applying on biological migration of man-made anthropogenic radionuclides 90Sr and 137Cs in the system water - soil – plant. The tests are being carried out under field conditions with and without application of polymers in root-inhabited media in more radioecological tension zone (with the radius of 7 km from the Armenian Nuclear Power Plant). The polymers on the base of K+, Caµ, KµCaµ ions were tested. Productivity of pepper depending on the presence and type of polymer material, content of artificial radionuclides in waters, soil and plant material has been determined. The character of different polymers influence on the artificial radionuclides migration and accumulation in the system water-soil-plant and accumulation in the plants has been cleared up.

Keywords: accumulation of artificial radionuclides, pepper, polymer, water-soil-plant system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
230 Design of Multiple Clouds Based Global Performance Evaluation Service Broker System

Authors: Dong-Jae Kang, Nam-Woo Kim, Duk-Joo Son, Sung-In Jung

Abstract:

According to dramatic growth of internet services, an easy and prompt service deployment has been important for internet service providers to successfully maintain time-to-market. Before global service deployment, they have to pay the big cost for service evaluation to make a decision of the proper system location, system scale, service delay and so on. But, intra-Lab evaluation tends to have big gaps in the measured data compared with the realistic situation, because it is very difficult to accurately expect the local service environment, network congestion, service delay, network bandwidth and other factors. Therefore, to resolve or ease the upper problems, we propose multiple cloud based GPES Broker system and use case that helps internet service providers to alleviate the above problems in beta release phase and to make a prompt decision for their service launching. By supporting more realistic and reliable evaluation information, the proposed GPES Broker system saves the service release cost and enables internet service provider to make a prompt decision about their service launching to various remote regions.

Keywords: GPES Broker system, Cloud Service Broker, Multiple Cloud, Global performance evaluation service (GPES), Service provisioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
229 Improvement of Water Distillation Plant by Using Statistical Process Control System

Authors: Qasim Kriri, Harsh B. Desai

Abstract:

Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.

Keywords: Acceptable quality level, statistical quality control, control charts, process charts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
228 Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, Check valve, Micro pump, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
227 Development of Face Surrogate for Impact Protection Design for Cyclist

Authors: Sanga Monthatipkul, Pio Iovenitti, Igor Sbarski

Abstract:

Bicycle usage for exercise, recreation, and commuting to work in Australia shows that pedal cycling is the fourth most popular activity with 10.6% increase in participants between 2001 and 2007. As with other means of transport, accident and injury becomes common although mandatory bicycle helmet wearing has been introduced. The research aims to develop a face surrogate made of sandwich of rigid foam and rubber sheets to represent human facial bone under blunt impact. The facial surrogate will serve as an important test device for further development of facial-impact protection for cyclist. A test procedure was developed to simulate the energy of impact and record data to evaluate the effect of impact on facial bones. Drop tests were performed to establish a suitable combination of materials. It was found that the sandwich structure of rigid extruded-polystyrene foam (density of 40 kg/m3 with a pattern of 6-mm-holes), Neoprene rubber sponge, and Abrasaflex rubber backing, had impact characteristics comparable to that of human facial bone. In particular, the foam thickness of 30 mm and 25 mm was found suitable to represent human zygoma (cheekbone) and maxilla (upper-jaw bone), respectively.

Keywords: Facial impact protection, face surrogate, cyclist, accident prevention

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
226 Removal of CO2 and H2S using Aqueous Alkanolamine Solusions

Authors: Zare Aliabad, H., Mirzaei, S.

Abstract:

This work presents a theoretical investigation of the simultaneous absorption of CO2 and H2S into aqueous solutions of MDEA and DEA. In this process the acid components react with the basic alkanolamine solution via an exothermic, reversible reaction in a gas/liquid absorber. The use of amine solvents for gas sweetening has been investigated using process simulation programs called HYSYS and ASPEN. We use Electrolyte NRTL and Amine Package and Amines (experimental) equation of state. The effects of temperature and circulation rate and amine concentration and packed column and murphree efficiency on the rate of absorption were studied. When lean amine flow and concentration increase, CO2 and H2S absorption increase too. With the improvement of inlet amine temperature in absorber, CO2 and H2S penetrate to upper stages of absorber and absorption of acid gases in absorber decreases. The CO2 concentration in the clean gas can be greatly influenced by the packing height, whereas for the H2S concentration in the clean gas the packing height plays a minor role. HYSYS software can not estimate murphree efficiency correctly and it applies the same contributions in all diagrams for HYSYS software. By improvement in murphree efficiency, maximum temperature of absorber decrease and the location of reaction transfer to the stages of bottoms absorber and the absorption of acid gases increase.

Keywords: Absorber, DEA, MDEA, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17314
225 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: Indoor air, carbon nanoparticles, LPG, partially premixed flame, optical techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
224 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
223 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz

Abstract:

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Keywords: Permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
222 Rain Cell Ratio Technique in Path Attenuation for Terrestrial Radio Links

Authors: Peter Odero Akuon

Abstract:

A rain cell ratio model is proposed that computes attenuation of the smallest rain cell which represents the maximum rain rate value i.e. the cell size when rainfall rate is exceeded 0.01% of the time, R0.01 and predicts attenuation for other cells as the ratio with this maximum. This model incorporates the dependence of the path factor r on the ellipsoidal path variation of the Fresnel zone at different frequencies. In addition, the inhomogeneity of rainfall is modeled by a rain drop packing density factor. In order to derive the model, two empirical methods that can be used to find rain cell size distribution Dc are presented. Subsequently, attenuation measurements from different climatic zones for terrestrial radio links with frequencies F in the range 7-38 GHz are used to test the proposed model. Prediction results show that the path factor computed from the rain cell ratio technique has improved reliability when compared with other path factor and effective rain rate models, including the current ITU-R 530-15 model of 2013.

Keywords: Packing density of rain drops, prediction model, rain attenuation, rain cell ratio technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
221 Developing Kazakh Language Fluency Test in Nazarbayev University

Authors: Saule Mussabekova, Samal Abzhanova

Abstract:

The Kazakh Language Fluency Test, based on the IELTS exam, was implemented in 2012 at Nazarbayev University in Astana, Kazakhstan. We would like to share our experience in developing this exam and some exam results with other language instructors. In this paper, we will cover all these peculiarities and their related issues. The Kazakh Language Fluency Test is a young exam. During its development, we faced many difficulties. One of the goals of the university and the country is to encourage fluency in the Kazakh language for all citizens of the Republic. Nazarbayev University has introduced a Kazakh language program to assist in achieving this goal. This policy is one-step in ensuring that NU students have a thorough understanding of the Kazakh language through a fluency test based on the International English Language Testing System (IELTS). The Kazakh Language Fluency Test exam aims to determine student’s knowledge of Kazakh language. The fact is that there are three types of students at Nazarbayev University: Kazakh-speaking heritage learners, Russian-speaking and English-speaking students. Unfortunately, we have Kazakh students who do not speak Kazakh. All students who finished school with Russian language instruction are given Kazakh Language Fluency Test in order to determine their Kazakh level. After the test exam, all students can choose appropriate Kazakh course: Basic Kazakh, Intermediate Kazakh and Upper-Intermediate Kazakh. The Kazakh Language Fluency Test consists of four parts: Listening, Reading, Writing and Speaking. They are taken on the same day in the abovementioned order.

Keywords: Diagnostic language test, Kazakh language, placement test, test result.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
220 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming

Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe

Abstract:

Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.

Keywords: Induction heating, single point incremental forming, FE modeling, advanced high strength steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
219 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: Residual stress, X750 superalloy, finite element, welding, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
218 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: Aerial robots, Motion primitives, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
217 Microbiological Contamination of Outdoor Air in Marine Durres's Harbour, Albania

Authors: Laura Gjyli, Pirro Prifti, Lindita Mukli, Silvana Gjyli, Irida Ikonomi, Jerina Kolitari

Abstract:

Microbial air contamination of the outdoor air in Marine Durres-s Harbour (Durres, Albania) was estimated by sedimentation technique in August-October 2008. The sampling areas were: Ferry Terminal (FT), Fishery Harbor (FH), East Zone (EZ), Fuel Quay (FQ) and Apollonian Beach (AB). The aim of this study was to measure the number of aerobic plate count (mesophilic aerobic bacteria) and fungi (yeasts and molds) in the outdoor air in these areas. The number of colonies that were formed determines the number of cells at the moment in the outdoor air; respectively the number of mesophilic aerobic bacteria and yeasts and molds. The measure of bacteria and fungi used is CFU (Colony Forming Units) per Petri dish. It is said that marine harbours are very polluted areas. The aim of study was the definition of mesophilic aerobic bacteria and yeasts and molds number, and the comparison of microorganisms number in air sampling areas.

Keywords: Air microbiology, colony forming units, Marine Durres's Harbour, mesophilic aerobic bacteria, outdoor air, yeasts and molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
216 Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method

Authors: L. S. Godlevsky, N. V. Kresyun, V. P. Martsenyuk, K. S. Shakun, T. V. Tatarchuk, K. O. Prybolovets, L. F. Kalinichenko, M. Karpinski, T. Gancarczyk

Abstract:

Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (P < 0.05), while the value of a* index was reduced by 3.8 times when compared with control one (P < 0.05). b* index exceeded such one in the control group by 12.4 times (P < 0.05). The integrated index on color difference (ΔE) exceeded control value by 2.87 times (P < 0.05). More pronounced differences with ΔE were followed by a shorter period of MA appearance with a correlation level at -0.56 (P < 0.05). The specificity of diagnostics raised by 2.17 times (P < 0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (P < 0.05).

Keywords: Diabetic retinopathy, multiscale texture gradient, color spectrum analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576
215 Study of the Antimicrobial Activity of Aminoreductone against Pathogenic Bacteria in Comparison with Other Antibiotics

Authors: Vu Thu Trang, Lam Xuan Thanh, Samira Sarter, Tomoko Shimamura, Hiroaki Takeuchi 

Abstract:

Antimicrobial activities of aminoreductone (AR), a product formed in the initial stage of Maillard reaction, were screened against pathogenic bacteria. A significant growth inhibition of AR against all 7 isolates (Staphylococcus aureus ATCC® 25923™, Salmonella typhimurium ATCC® 14028™, Bacillus cereus ATCC® 13061™, Bacillus subtilis ATCC® 11774™, Escherichia coli ATCC® 25922™, Enterococcus faecalis ATCC® 29212™, Listeria innocua ATCC® 33090™) were observed by the standard disc diffusion methods. The inhibition zone for each isolate by AR (2.5 mg) ranged from 15±0mm to 28.3±0.4mm in diameter. The minimum inhibitory concentration (MIC) of AR ranging from 20mM to 26mM was proven in the 7 isolates tested. AR also showed the similar effect of growth inhibition in comparison with antibiotics frequently used for the treatment of infections bacteria, such as amikacin, ciprofloxacin, meropennem and levofloxacin. The results indicated that foods containing AR are valuable sources of bioactive compounds towards pathogenic bacteria.

Keywords: Pathogenic bacteria, aminoreductone, Maillard reaction, antimicrobial activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
214 Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms

Authors: N. Behidj, K. Benyounes, T. Dahmane, A. Allem

Abstract:

The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is Thymus inodorusby the middle agar diffusion method on following microorganisms. We have Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; A. Niger, A. fumigatus and C. albicansare the most resistant. But it is noted that, S. aureus is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of Thymus inodorus flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%.

Keywords: Antimicrobial activity, flavonoids, strains, Thymus inodorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
213 Identification of Anaerobic Microorganisms for Converting Kitchen Waste to Biogas

Authors: A. Malakahmad, S.M. Zain, N.E. Ahmad Basri, S. R. Mohamed Kutty, M. H. Isa

Abstract:

Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system.

Keywords: Anaerobic microorganism identification, Kitchenwaste, Biogas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
212 Development of a Water-Jet Assisted Underwater Laser Cutting Process

Authors: Suvradip Mullick, Yuvraj K. Madhukar, Subhranshu Roy, Ashish K. Nath

Abstract:

We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.

Keywords: Laser, underwater cutting, water-jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4659
211 A Study on the Average Information Ratio of Perfect Secret-Sharing Schemes for Access Structures Based On Bipartite Graphs

Authors: Hui-Chuan Lu

Abstract:

A perfect secret-sharing scheme is a method to distribute a secret among a set of participants in such a way that only qualified subsets of participants can recover the secret and the joint share of participants in any unqualified subset is statistically independent of the secret. The collection of all qualified subsets is called the access structure of the perfect secret-sharing scheme. In a graph-based access structure, each vertex of a graph G represents a participant and each edge of G represents a minimal qualified subset. The average information ratio of a perfect secret-sharing scheme  realizing the access structure based on G is defined as AR = (Pv2V (G) H(v))/(|V (G)|H(s)), where s is the secret and v is the share of v, both are random variables from  and H is the Shannon entropy. The infimum of the average information ratio of all possible perfect secret-sharing schemes realizing a given access structure is called the optimal average information ratio of that access structure. Most known results about the optimal average information ratio give upper bounds or lower bounds on it. In this present structures based on bipartite graphs and determine the exact values of the optimal average information ratio of some infinite classes of them.

Keywords: secret-sharing scheme, average information ratio, star covering, core sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
210 Stabilizer Fillet Weld Strength under Multiaxial Loading (Effect of Force, Size and Residual Stress)

Authors: Iman Hadipour, Javad Marzbanrad

Abstract:

In this paper, the strength of a stabilizer is determined when the static and fatigue multiaxial loading are applied. Stabilizer is a part of suspension system in the heavy truck for stabilizing the cabin against the vibration of the road which composes of a thin-walled tube joined to a forge component by fillet weld. The component is loaded by non proportional random sequence of torsion and bending. Residual stress of welding process is considered here for static loading. This static loading with road irregularities are applied in this study as fatigue case that can affected in the fillet welded area of this part. The stresses in the welded structure are calculated using FEA. In addition, the fatigue with multi axial loading in the fillet weld is also investigated and the critical zone of the stabilizer is specified and presented by graphs. Residual stresses that have been resulted by the thermal forces are considered in FEA. Force increasing is the element of finding the critical point of the component.

Keywords: Fillet weld, fatigue, weld toe crack, weld root crack, S-N curve, multiaxial load, residual stress, combined force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065