Search results for: Multiwalled Carbon Nanotubes
306 Evaluation of Biomass Introduction Methods in Coal Co-Gasification
Authors: Ruwaida Abdul Rasid, Kevin J. Hughes, Peter J. Heggs, Mohamed Pourkashanian
Abstract:
Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (cofeeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modelled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.
Keywords: Aspen HYSYS, biomass, coal, co-gasification modelling and simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325305 Effect of Different Fertilization Methods on Soil Biological Indexes
Authors: Khosro Mohammadi
Abstract:
Fertilization plays an important role in crop growth and soil improvement. This study was conducted to determine the best fertilization system for wheat production. Experiments were arranged in a complete block design with three replications in two years. Main plots consisted of six methods of fertilization including (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control were arranged in sub plots. The addition of compost or farm yard manure significantly increased the soil microbial biomass carbon in comparison to the chemical fertilizer. The dehydrogenase, phosphatase and urease activities in the N3 treatment were significantly lower than in the farm yard manure and compost treatments.
Keywords: Enzyme activity, fertilization, microbial biomasscarbon, wheat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662304 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies
Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan
Abstract:
Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.Keywords: Economic wide impact, energy models, environmental policy instruments, mitigating CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555303 Shear Strengthening of RC T Beam using CFRP Laminate: A Review
Authors: M.B.S. Alferjani, A.A. Abdul Samad, N. Mohamad, M. Hilton, N. Ali
Abstract:
This paper presents the Literature Review of carbon fiber reinforced polymer (CFRP) strips to reinforced concrete (RC) as a strengthening solution for T-beams. Although a great deal of research has been carried out on Rectangular beams strengthened with Fibre-Reinforced Polymer composites (FRP), Fiber reinforced polymer (FRP) composites have been increasingly studied for their application in the flexural or shear strengthening of reinforced concrete (RC) members. A detailed discussion of the shearstrengthening repair with FRP is undertaken. This paper will be limited to research of CFRP material externally bonded to the tensile face of concrete beams. In particular, research studying the effect of externally applied CFRP materials on the shear performance of reinforced concrete beams will be reported.
Keywords: CFRP, Concrete, Flexural, FRP, Shear, Strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860302 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device
Authors: M. Hoseinnezhad, K. Gharanjig
Abstract:
Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.Keywords: Dye-sensitized solar cells, Indoline dye, nanostructure, oxidation potential, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964301 Counter-Policies by Industrial Countries to Tackle Global Warming, from Perspective of the Kyoto Protocol
Authors: Yau-Ting, Sung, Hsueh-Chih, Chen, Hui-Peng, Hsiung, Hsun-Tsum, Huang
Abstract:
In accordance with environmental impacts contended in Kyoto Protocol, the study aims to explore the different administrative and non-administrative measurements that industrial countries, such as America, German, Japan, Korea, Holland and British take to face with the increasing Global Warming phenomena. By large, these measurements consist of versatile dimensions, including of education and advocating, economical instruments, research developments and instances, restricted instruments, voluntary contacts, exchangeable permit for carbon-release and public investments. The results of discussion for the study are as follows: both economical impacts as well as reformations for nations that are affected via Kyoto Protocol, and human testifying for variables of global surroundings in the age of Kyoto Protocol.
Keywords: Global warming, Kyoto protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760300 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter
Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba
Abstract:
In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.
Keywords: Diesel engine, helicopter, simulation, environmental impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246299 A Green Chemical Technique for the Synthesis of Magnetic Nanoparticles by Magnetotactic Bacteria
Authors: Parisa Tajer-Mohammad-Ghazvini, Rouha Kasra-Kermanshahi, Ahmad Nozad-Golikand, Majid Sadeghizadeh
Abstract:
Bacterial magnetic nanoparticles have great useful potential in biotechnological and biomedical applications. In this study, a liquid growth medium was modified for cultivation a fastidious magnetotactic bacterium that has been isolated from Anzali lagoon, Iran in our previous research. These modifications include change in vitamin, mineral, carbon sources and etcetera. In our experience, the serum bottles and designed air-tight laboratory bottles were used to create microaerobic conditions in order to development of a method for scale-up experiment. This information may serve as a guide to green chemistry based biological protocols for the synthesis of magnetic nanoparticles with control over the chemical composition, morphology and size.Keywords: Green chemistry, Magnetosome, Magnetotactic bacteria, Magnetic nanoparticles, Nano-Biotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4030298 The Study on Mechanical Properties of Graphene Using Molecular Mechanics
Authors: I-Ling Chang, Jer-An Chen
Abstract:
The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.Keywords: Energy minimization, fracture, graphene, molecular mechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860297 Effect of Selenite and Selenate Uptake by Maize Plants on Specific Leaf Area
Authors: F. Garousi, Sz. Veres, É. Bódi, Sz. Várallyay, B. Kovács
Abstract:
Specific leaf area (SLA; cm2leaf g-1leaf) the ratio of leaf area to leaf dry mass is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain and also can be used as a rapid and diagnostic tool. In this study, two species of soluble inorganic selenium forms, selenite (Se^IV) and selenate (Se^VI) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of SLA for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of Se^IV and Se^VI were not effective on maize plants’ SLA significantly although high level of 3 mg.kg-1 Se^IV had negative affect on growth of the samples that had been treated by it but about Se^VI samples we did not observe this state and our different considered Se^VI concentrations were not toxic for maize plants.
Keywords: Maize, Sodium selenate, sodium selenite, specific leaf area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885296 Influence of Ammonium Concentration on the Performance of an Inorganic Biofilter Treating Methane
Authors: Marc Veillette, Antonio Avalos Ramirez, Michèle Heitz
Abstract:
Among the technologies available to reduce methane emitted from the pig industry, biofiltration seems to be an effective and inexpensive solution. In methane (CH4) biofiltration, nitrogen is an important macronutrient for the microorganisms growth. The objective of this research project was to study the effect of ammonium (NH4 +) on the performance, the biomass production and the nitrogen conversion of a biofilter treating methane. For NH4 + concentrations ranging from 0.05 to 0.5 gN-NH4 +/L, the CH4 removal efficiency and the dioxide carbon production rate decreased linearly from 68 to 11.8 % and from 7.1 to 0.5 g/(m3-h), respectively. The dry biomass content varied from 4.1 to 5.8 kg/(m3 filter bed). For the same range of concentrations, the ammonium conversion decreased while the specific nitrate production rate increased. The specific nitrate production rate presented negative values indicating denitrification in the biofilter.Keywords: Methane, biofiltration, pig, ammonium, nitrification, denitrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693295 The Gasification of Fructose in Supercritical Water
Authors: Shyh-Ming Chern, H. Y. Cheng
Abstract:
Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.
Keywords: Biomass, Fructose, Gasification, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034294 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.
Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 349293 Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase
Authors: N. M. Ahmad, J. Abdullah, N. I. Ramli, S. Abd Rahman, N. E. Azmi, Z. Hamzah, A. Saat, N. H. Rahman
Abstract:
A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified with the CTAB/PEG/ZrO2/GOx showed electrocatalytical response to the oxidation of glucose when ferrocene carboxaldehyde was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). Several parameters such as working potential, effect of pH and effect of ZrO2/PEG layers that governed the analytical performance of the biosensor, have been studied. The biosensor was applied to detect glucose with a linear range of 0.4 to 2.0 mmol L−1 with good repetability and reproducibility.Keywords: Nanocomposite, Nanoparticles, Modified SPE, Ferrocenecarboxaldehyde.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260292 Temperature-Dependence of Hardness and Wear Resistance of Stellite Alloys
Authors: S. Kapoor, R. Liu, X. J. Wu, M. X. Yao
Abstract:
A group of Stellite alloys are studied in consideration of temperature effects on their hardness and wear resistance. The hardness test is conducted on a micro-hardness tester with a hot stage equipped that allows heating the specimen up to 650°C. The wear resistance of each alloy is evaluated using a pin-on-disc tribometer with a heating furnace built-in that provides the temperature capacity up to 450°C. The experimental results demonstrate that the hardness and wear resistance of Stellite alloys behave differently at room temperature and at high temperatures. The wear resistance of Stellite alloys at room temperature mainly depends on their carbon content and also influenced by the tungsten content in the alloys. However, at high temperatures the wear mechanisms of Stellite alloys become more complex, involving multiple factors. The relationships between chemical composition, microstructure, hardness and wear resistance of these alloys are studied, with focus on temperature effect on these relations.Keywords: Stellite alloy, temperature, hardness, wear resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6454291 Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida
Authors: Kunwar D. Yadav, Dayanand Sharma
Abstract:
Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and Eisenia foetida as earthworm spices. The vermicompost reactor of 0.3 m3 capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg).Keywords: Cow dung, Eisenia foetida, textile sludge, vermicompost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057290 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology
Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester
Abstract:
Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.
Keywords: Composite material, Fiber metal laminate, Lightweight construction, Prepreg press technology, Large-series production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891289 Biological and Chemical Filter Treatment for Wastewater Reuse
Authors: M. J. Go, H. S. Shin, D. W. Kim, D. Chang, S. B. Han, J. M. Hur, B. R. Chung, J. K. Choi, J. Fan
Abstract:
This study developed a high efficient and combined biological and chemical filter treatment process. This process used PAC (Powder Activated Carbon), Alum and attached growth treatment process. The system removals of total nitrogen and total phosphorus ratio of two were as high as 70% and 73%, moreover, the effluent water was suitable to urban and agricultural water. Also the advantages of this process are not only occupies small place but is simple, economic and easy operating. Besides, our developed process can keep stable process efficiency even in relative low load level. Therefore, this study judges that use of the high efficient and combined biological and chemical filter treatment process, it is expected that the effluent water in this system can be reused as urban and agricultural water.Keywords: biological and chemical filter treatment, wastewaterreuse, PAC, Alum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363288 Analysis of Catalytic Properties of Ni3Al Thin Foils for the Methanol and Hexane Decomposition
Authors: M. Michalska-Domańska, P. Jóźwik, Z. Bojar
Abstract:
Intermetallic Ni3Al – based alloys belong to a group of advanced materials characterized by good chemical and physical properties (such as structural stability, corrosion resistance) which offer advenced technological applications. The paper presents the study of catalytic properties of Ni3Al foils (thickness approximately 50 &m) in the methanol and hexane decomposition. The egzamined material posses microcrystalline structure without any additional catalysts on the surface. The better catalytic activity of Ni3Al foils with respect to quartz plates in both methanol and hexane decomposition was confirmed. On thin Ni3Al foils the methanol conversion reaches approximately 100% above 480 oC while the hexane conversion reaches approximately 100% (98,5%) at 500 oC. Deposit formed during the methanol decomposition is built up of carbon nanofibers decorated with metal-like nanoparticles.Keywords: hexane decomposition, methanol decomposition, Ni3Al thin foils, Ni nanoparticles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536287 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing
Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park
Abstract:
Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.
Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181286 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.
Keywords: Forest soil, mineralization rate, soil respiration rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470285 Denitrification of Wastewater Containing High Nitrate Using a Bioreactor System Packed by Microbial Cellulose
Authors: H. Godini, A. Rezaee, A. Jafari, S. H. Mirhousaini
Abstract:
A Laboratory-scale packed bed reactor with microbial cellulose as the biofilm carrier was used to investigate the denitrification of high-strength nitrate wastewater with specific emphasis on the effect the nitrogen loading rate and hydraulic retention time. Ethanol was added as a carbon source for denitrification. As a result of this investigation, it was found that up to 500 mg/l feed nitrate concentration the present system is able to produce an effluent with nitrate content below 10 ppm at 3 h hydraulic retention time. The highest observed denitrification rate was 4.57 kg NO3-N/ (m3 .d) at a nitrate load of 5.64 kg NO3- N/(m3 .d), and removal efficiencies higher than 90% were obtained for loads up to 4.2 kg NO3-N/(m3 .d). A mass relation between COD consumed and NO3-N removed around 2.82 was observed. This continuous-flow bioreactor proved an efficient denitrification system with a relatively low retention time.Keywords: Biological nitrate removal, Denitrification, Microbial cellulose, Packed-bed reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565284 The Effect of Biochar, Inoculated Biochar and Compost Biological Component of the Soil
Authors: H. Dvořáčková, I. Mikajlo, J. Záhora, J. Elbl
Abstract:
Biochar can be produced from the waste matter and its application has been associated with returning of carbon in large amounts into the soil. The impacts of this material on physical and chemical properties of soil have been described. The biggest part of the research work is dedicated to the hypothesis of this material’s toxic effects on the soil life regarding its effect on the soil biological component. At present, it has been worked on methods which could eliminate these undesirable properties of biochar. One of the possibilities is to mix biochar with organic material, such as compost, or focusing on the natural processes acceleration in the soil. In the experiment has been used as the addition of compost as well as the elimination of toxic substances by promoting microbial activity in aerated water environment. Biochar was aerated for 7 days in a container with a volume of 20 l. This way modified biochar had six times higher biomass production and reduce mineral nitrogen leaching. Better results have been achieved by mixing biochar with compost.Keywords: Leaching of nitrogen, soil, biochar, compost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3030283 Impact of Herbicides on Soil Biology in Rapeseed
Authors: M. Eickermann, M. K. Class, J. Junk
Abstract:
Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.Keywords: Cropping system, dehydrogenase activity, herbicides, mechanical weed control, oilseed rape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744282 Production of Milk Clotting Protease by Rhizopus Stolonifer through Optimization of Culture Conditions
Authors: S. Gais, F. Fazouane, A. Mechakra
Abstract:
The present study describes the biosynthesis of a milkclotting protease by solid state fermentation (SSF) of a locally isolated mould, Rhizopus stolonifer. The production medium was prepared using wheat bran at 50% (w/v). The production conditions are optimized by varying 7 parameters: carbon and nitrogen sources, medium moisture, temperature, pH, fermentation time and inoculum-s size. The maximum enzyme synthesis was measured after 96 h of incubation time at temperature of 28°C. The optimum pH determined was 6 and the inoculum size was 3.106spores/ml. The optimum initial moisture content is comprised between 50 to 70%. The formation of milk clotting protease is enhanced when galactose and peptone are used at 10% (w/v) and 1% (w/v) concentrations respectively. The maximum production of milk clotting protease is 120 US/ml.Keywords: Milk clotting activity, protease production, Rhizopus stolonifer, Solid state fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302281 A Study of Calcination and Carbonation of Cockle Shell
Authors: N.A. Rashidi, M. Mohamed, S.Yusup
Abstract:
Calcium oxide (CaO) as carbon dioxide (CO2) adsorbent at the elevated temperature has been very well-received thus far. The CaO can be synthesized from natural calcium carbonate (CaCO3) sources through the reversible calcination-carbonation process. In the study, cockle shell has been selected as CaO precursors. The objectives of the study are to investigate the performance of calcination and carbonation with respect to different temperature, heating rate, particle size and the duration time. Overall, better performance is shown at the calcination temperature of 850oC for 40 minutes, heating rate of 20oC/min, particle size of < 0.125mm and the carbonation temperature is at 650oC. The synthesized materials have been characterized by nitrogen physisorption and surface morphology analysis. The effectiveness of the synthesized cockle shell in capturing CO2 (0.72 kg CO2/kg adsorbent) which is comparable to the commercialized adsorbent (0.60 kg CO2/kg adsorbent) makes them as the most promising materials for CO2 capture.Keywords: Calcination, Calcium oxide, Carbonation, Cockle shell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3591280 The Study of Groundcover for Heat Reduction
Authors: Winai Mankhatitham
Abstract:
This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1. Types of groundcover affecting heat reduction 2. The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane 3. Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof.
Keywords: Groundcover, Green Roof, Heat Reduction, Energy Saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500279 Experimental Study of the Extraction of Copper(II) from Sulphuric Acid by Means of Sodium Diethyldithiocarbamate (SDDT)
Authors: S.Touati, A.H. Meniai
Abstract:
The present work presents the extraction of copper(II) from sulphuric acid solutions with Sodium diethyldithiocarbamate (SDDT), and six different organic diluents: Dichloromethane, Chloroform, Carbon tetrachloride, Toluene, xylene and Cyclohexane, were tested. The pair SDDT/Chloroform showed to be the most selective in removing the copper cations, and hence was considered throughout the experimental study. The effects of operating parameters such as the initial concentration of the extracting agent, the agitation time, the agitation speed and the acid concentration were considered. For an initial concentration of Cu (II) of 63 ppm in a 0.5 M sulphuric acid solution, both with a mass of the extracting agent of 20 mg, an extraction percentage of about 97.8 % and a distribution coefficient of 44.42 were obtained, respectively, confirming the performance of the SDDT-Chloroform pair.Keywords: Copper (II), Distribution coefficient, Extraction, SDDT, Sulphuric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835278 Bioremediation of Phenanthrene by Monocultures and Mixed Culture Bacteria Isolated from Contaminated Soil
Authors: A. Fazilah, I. Darah, I. Noraznawati
Abstract:
Three different bacteria capable of degrading phenanthrene were isolated from hydrocarbon contaminated site. In this study, the phenanthrene-degrading activity by defined monoculture was determined and mixed culture was identified as Acinetobacter sp. P3d, Bacillus sp. P4a and Pseudomonas sp. P6. All bacteria were able to grow in a minimal salt medium saturated with phenanthrene as the sole source of carbon and energy. Phenanthrene degradation efficiencies by different combinations (consortia) of these bacteria were investigated and their phenanthrene degradation was evaluated by gas chromatography. Among the monocultures, Pseudomonas sp. P6 exhibited 58.71% activity compared to Acinetobacter sp. P3d and Bacillus sp. P4a which were 56.97% and 53.05%, respectively after 28 days of cultivation. All consortia showed high phenanthrene elimination which were 95.64, 79.37, 87.19, 79.21% for Consortia A, B, C and D, respectively. The results indicate that all of the bacteria isolated may effectively degrade target chemical and have a promising application in bioremediation of hydrocarbon contaminated soil purposes.Keywords: Acinetobacter sp. P3d, Bacillus sp. P4a, consortia, phenanthrene, Pseudomonas sp. P6.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154277 Traditional Ecological Knowledge System as Climate Change Adaptation Strategies for Mountain Community of Tangkhul Tribe in Northeast India
Authors: Tuisem Shimrah
Abstract:
One general agreement on climate change is that its causes may be local but the effects are global. Indigenous people are subscribed to “low-carbon” traditional ways of life and as such they have contributed little to causes of climate change. On the contrary they are the most adversely affected by climate change due to their dependence on surrounding rich biological wealth as a source of their livelihood, health care, entertainment and cultural activities This paper deals with the results of the investigation of various adaptation strategies adopted to combat climate change by traditional community. The result shows effective ways of application of traditional knowledge and wisdom applied by Tangkhul traditional community at local and community level in remote areas in Northeast India. Four adaptation measures are being presented in this paper.
Keywords: Climate change, adaptation, Tangkhul, traditional community, policy, Northeast India.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119