Search results for: Real Coded Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5451

Search results for: Real Coded Genetic Algorithm

201 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker

Abstract:

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
200 Innovative Waste Management Practices in Remote Areas

Authors: Dolores Hidalgo, Jesús M. Martín-Marroquín, Francisco Corona

Abstract:

Municipal waste consist of a variety of items that are everyday discarded by the population. They are usually collected by municipalities and include waste generated by households, commercial activities (local shops) and public buildings. The composition of municipal waste varies greatly from place to place, being mostly related to levels and patterns of consumption, rates of urbanization, lifestyles, and local or national waste management practices. Each year, a huge amount of resources is consumed in the EU, and according to that, also a huge amount of waste is produced. The environmental problems derived from the management and processing of these waste streams are well known, and include impacts on land, water and air. The situation in remote areas is even worst. Difficult access when climatic conditions are adverse, remoteness of centralized municipal treatment systems or dispersion of the population, are all factors that make remote areas a real municipal waste treatment challenge. Furthermore, the scope of the problem increases significantly because the total lack of awareness of the existing risks in this area together with the poor implementation of advanced culture on waste minimization and recycling responsibly. The aim of this work is to analyze the existing situation in remote areas in reference to the production of municipal waste and evaluate the efficiency of different management alternatives. Ideas for improving waste management in remote areas include, for example: the implementation of self-management systems for the organic fraction; establish door-to-door collection models; promote small-scale treatment facilities or adjust the rates of waste generation thereof.

Keywords: Door to door collection, islands, isolated areas, municipal waste, remote areas, rural communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
199 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
198 Potential Effects of Human Bone Marrow Non- Mesenchymal Mononuclear Cells on Neuronal Differentiation

Authors: Chareerut Phruksaniyom, Khwanthana Grataitong, Permphan Dharmasaroja, Surapol Issaragrisil

Abstract:

Bone marrow-derived stem cells have been widely studied as an alternative source of stem cells. Mesenchymal stem cells (MSCs) were mostly investigated and studies showed MSCs can promote neurogenesis. Little is known about the non-mesenchymal mononuclear cell fraction, which contains both hematopoietic and nonhematopoietic cells, including monocytes and endothelial progenitor cells. This study focused on unfractionated bone marrow mononuclear cells (BMMCs), which remained 72 h after MSCs were adhered to the culture plates. We showed that BMMC-conditioned medium promoted morphological changes of human SH-SY5Y neuroblastoma cells from an epithelial-like phenotype towards a neuron-like phenotype as indicated by an increase in neurite outgrowth, like those observed in retinoic acid (RA)-treated cells. The result could be explained by the effects of trophic factors released from BMMCs, as shown in the RT-PCR results that BMMCs expressed nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Similar results on the cell proliferation rate were also observed between RA-treated cells and cells cultured in BMMC-conditioned medium, suggesting that cells creased proliferating and differentiated into a neuronal phenotype. Using real-time RT-PCR, a significantly increased expression of tyrosine hydroxylase (TH) mRNA in SHSY5Y cells indicated that BMMC-conditioned medium induced catecholaminergic identities in differentiated SH-SY5Y cells.

Keywords: bone marrow, neuronal differentiation, neurite outgrowth, trophic factor, tyrosine hydroxylase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
197 Eco-Roof Systems in Subtropical Climates for Sustainable Development and Mitigation of Climate Change

Authors: M. O’Driscoll, M. Anwar, M. G. Rasul

Abstract:

The benefits of eco-roofs is quite well known, however there remains very little research conducted for the implementation of eco-roofs in subtropical climates such as Australia. There are many challenges facing Australia as it moves into the future, climate change is proving to be one of the leading challenges. In order to move forward with the mitigation of climate change, the impacts of rapid urbanization need to be offset. Eco-roofs are one way to achieve this; this study presents the energy savings and environmental benefits of the implementation of eco-roofs in subtropical climates. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two shipping containers were converted into small offices, one with an eco-roof and one without. These were used for temperature, humidity and energy consumption data collection. In addition, a computational model was developed using Design Builder software (state-of-the-art building energy simulation software) for simulating energy consumption of shipping containers and environmental parameters, this was done to allow comparison between simulated and real world data. This study found that eco-roofs are very effective in subtropical climates and provide energy saving of about 13% which agrees well with simulated results. 

Keywords: Climate Change, Eco/Green roof, Energy savings, Subtropical climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
196 Comparative Usability Study of the Websites of Top Universities in Three Continents: A Case Study of the University of Cape Town, Oxford University, and Harvard University

Authors: Stephen Akuma, Racheal Aluma, Abraham Undu

Abstract:

Academic websites play an important role in promoting education for all. They allow universities to provide users with digital academic services to save time and resources. A university website is not only a cost-effective and timely way to communicate with a variety of stakeholders, such as students, faculty, and visitors, but it is also a vehicle for the university to shape its image. The quality of a website is a major factor that universities consider in cyberspace. Potential students can easily apply to universities where the website provides useful and clear information. This has made the usability of websites an important area in meeting the needs and expectations of website users. In this paper, a comparative usability study of the University of Cape Town, Oxford University, and Harvard University academic websites (http://www.uct.ac.za/, https://www.ox.ac.uk/, and https://www.harvard.edu/) was carried out. The proactive user feedback technique was adopted for the comparative usability assessment of the aforementioned universities. The method was used by the researchers to collect and log records from the participants in real time. The result shows that the average dwell time on the websites of Harvard University, Oxford University, and Cape Town University in seconds for the three tasks are 51.58, 33.28, and 54.82 respectively. The System Usability Scale (SUS) scores for Harvard, Oxford, and the University of Cape Town are 49.81, 69.43, and 54.14 respectively. The result of the Analysis of Variance on the dwell time data shows a significant difference (p = .009) on the three websites. Our findings show that Oxford University has the most suitable website in terms of usability factors and other metrics than the other websites investigated. Practical implications are highlighted, and recommendations for improved website usability are suggested.

Keywords: Usability factors, user feedback, university websites, University of Cape Town, Harvard University, Oxford University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159
195 An Analysis on the Appropriateness and Effectiveness of CCTV Location for Crime Prevention

Authors: Tae-Heon Moon, Sun-Young Heo, Sang-Ho Lee, Youn-Taik Leem, Kwang-Woo Nam

Abstract:

This study aims to investigate the possibility of crime prevention through CCTV by analyzing the appropriateness of the CCTV location, whether it is installed in the hotspot of crime-prone areas, and exploring the crime prevention effect and transition effect. The real crime and CCTV locations of case city were converted into the spatial data by using GIS. The data was analyzed by hotspot analysis and weighted displacement quotient (WDQ). As study methods, it analyzed existing relevant studies for identifying the trends of CCTV and crime studies based on big data from 1800 to 2014 and understanding the relation between CCTV and crime. Second, it investigated the current situation of nationwide CCTVs and analyzed the guidelines of CCTV installation and operation to draw attention to the problems and indicating points of CCTV use. Third, it investigated the crime occurrence in case areas and the current situation of CCTV installation in the spatial aspects, and analyzed the appropriateness and effectiveness of CCTV installation to suggest a rational installation of CCTV and the strategic direction of crime prevention. The results demonstrate that there was no significant effect in the installation of CCTV on crime prevention in the case area. This indicates that CCTV should be installed and managed in a more scientific way reflecting local crime situations. In terms of CCTV, the methods of spatial analysis such as GIS, which can evaluate the installation effect, and the methods of economic analysis like cost-benefit analysis should be developed. In addition, these methods should be distributed to local governments across the nation for the appropriate installation of CCTV and operation. This study intended to find a design guideline of the optimum CCTV installation. In this regard, this study is meaningful in that it will contribute to the creation of a safe city.

Keywords: CCTV, Safe City, Crime Prevention, Spatial Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
194 Important Factors for Successful Solution of Emotional Situations: Empirical Study on Young People

Authors: R. Lekaviciene, D. Antiniene

Abstract:

Attempts to split the construct of emotional intelligence (EI) into separate components – ability to understand own and others’ emotions and ability to control own and others’ emotions may be meaningful more theoretically than practically. In real life, a personality encounters various emotional situations that require exhibition of complex EI to solve them. Emotional situation solution tests enable measurement of such undivided EI. The object of the present study is to determine sociodemographic and other factors that are important for emotional situation solutions. The study involved 1,430 participants from various regions of Lithuania. The age of participants varied from 17 years to 27 years. Emotional social and interpersonal situation scale EI-DARL-V2 was used. Each situation had two mandatory answering formats: The first format contained assignments associated with hypothetical theoretical knowledge of how the situation should be solved, while the second format included the question of how the participant would personally resolve the given situation in reality. A questionnaire that contained various sociodemographic data of subjects was also presented. Factors, statistically significant for emotional situation solution, have been determined: gender, family structure, the subject’s relation with his or her mother, mother’s occupation, subjectively assessed financial situation of the family, level of education of the subjects and his or her parents, academic achievement, etc. The best solvers of emotional situations are women with high academic achievements. According to their chosen study profile/acquired profession, they are related to the fields in social sciences and humanities. The worst solvers of emotional situations are men raised in foster homes. They are/were bad students and mostly choose blue-collar professions.

Keywords: Emotional intelligence, emotional situations, solution of situation, young people.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
193 Mnemotopic Perspectives: Communication Design as Stabilizer for the Memory of Places

Authors: C. Galasso

Abstract:

The ancestral relationship between humans and geographical environment has long been at the center of an interdisciplinary dialogue, which sees one of its main research nodes in the relationship between memory and places. Given its deep complexity, this symbiotic connection continues to look for a proper definition that appears increasingly negotiated by different disciplines. Numerous fields of knowledge are involved, from anthropology to semiotics of space, from photography to architecture, up to subjects traditionally far from these reasonings. This is the case of Design of Communication, a young discipline, now confident in itself and its objectives, aimed at finding and investigating original forms of visualization and representation, between sedimented knowledge and new technologies. In particular, Design of Communication for the Territory offers an alternative perspective to the debate, encouraging the reactivation and reconstruction of the memory of places. Recognizing mnemotopes as a cultural object of vertical interpretation of the memory-place relationship, design can become a real mediator of the territorial fixation of memories, making them increasingly accessible and perceptible, contributing to build a topography of memory. According to a mnemotopic vision, Communication Design can support the passage from a memory in which the observer participates only as an individual to a collective form of memory. A mnemotopic form of Communication Design can, through geolocation and content map-based systems, make chronology a topography rooted in the territory and practicable; it can be useful to understand how the perception of the memory of places changes over time, considering how to insert them in the contemporary world. Mnemotopes can be materialized in different format of translation, editing and narration and then involved in complex systems of communication. The memory of places, therefore, if stabilized by the tools offered by Communication Design, can make visible ruins and territorial stratifications, illuminating them with new communicative interests that can be shared and participated.

Keywords: Memory of places, design of communication, territory, mnemotope, topography of memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
192 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: H. Anıl, G. Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
191 Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
190 Fuzzy Power Controller Design for Purdue University Research Reactor-1

Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.

Abstract:

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
189 Problem Solving in Chilean Higher Education: Figurations Prior in Interpretations of Cartesian Graphs

Authors: Verónica Díaz

Abstract:

A Cartesian graph, as a mathematical object, becomes a tool for configuration of change. Its best comprehension is done through everyday life problem-solving associated with its representation. Despite this, the current educational framework favors general graphs, without consideration of their argumentation. Students are required to find the mathematical function without associating it to the development of graphical language. This research describes the use made by students of configurations made prior to Cartesian graphs with regards to an everyday life problem related to a time and distance variation phenomenon. The theoretical framework describes the function conditions of study and their modeling. This is a qualitative, descriptive study involving six undergraduate case studies that were carried out during the first term in 2016 at University of Los Lagos. The research problem concerned the graphic modeling of a real person’s movement phenomenon, and two levels of analysis were identified. The first level aims to identify local and global graph interpretations; a second level describes the iconicity and referentiality degree of an image. According to the results, students were able to draw no figures before the Cartesian graph, highlighting the need for students to represent the context and the movement of which causes the phenomenon change. From this, they managed Cartesian graphs representing changes in position, therefore, achieved an overall view of the graph. However, the local view only indicates specific events in the problem situation, using graphic and verbal expressions to represent movement. This view does not enable us to identify what happens on the graph when the movement characteristics change based on possible paths in the person’s walking speed.

Keywords: Cartesian graphs, higher education, movement modeling, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
188 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators

Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho

Abstract:

Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.

Keywords: Direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
187 Named Entity Recognition using Support Vector Machine: A Language Independent Approach

Authors: Asif Ekbal, Sivaji Bandyopadhyay

Abstract:

Named Entity Recognition (NER) aims to classify each word of a document into predefined target named entity classes and is now-a-days considered to be fundamental for many Natural Language Processing (NLP) tasks such as information retrieval, machine translation, information extraction, question answering systems and others. This paper reports about the development of a NER system for Bengali and Hindi using Support Vector Machine (SVM). Though this state of the art machine learning technique has been widely applied to NER in several well-studied languages, the use of this technique to Indian languages (ILs) is very new. The system makes use of the different contextual information of the words along with the variety of features that are helpful in predicting the four different named (NE) classes, such as Person name, Location name, Organization name and Miscellaneous name. We have used the annotated corpora of 122,467 tokens of Bengali and 502,974 tokens of Hindi tagged with the twelve different NE classes 1, defined as part of the IJCNLP-08 NER Shared Task for South and South East Asian Languages (SSEAL) 2. In addition, we have manually annotated 150K wordforms of the Bengali news corpus, developed from the web-archive of a leading Bengali newspaper. We have also developed an unsupervised algorithm in order to generate the lexical context patterns from a part of the unlabeled Bengali news corpus. Lexical patterns have been used as the features of SVM in order to improve the system performance. The NER system has been tested with the gold standard test sets of 35K, and 60K tokens for Bengali, and Hindi, respectively. Evaluation results have demonstrated the recall, precision, and f-score values of 88.61%, 80.12%, and 84.15%, respectively, for Bengali and 80.23%, 74.34%, and 77.17%, respectively, for Hindi. Results show the improvement in the f-score by 5.13% with the use of context patterns. Statistical analysis, ANOVA is also performed to compare the performance of the proposed NER system with that of the existing HMM based system for both the languages.

Keywords: Named Entity (NE), Named Entity Recognition (NER), Support Vector Machine (SVM), Bengali, Hindi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3402
186 University Students Sport’s Activities Assessment in Harsh Weather Conditions

Authors: Ammar S. M. Moohialdin, Bambang T. Suhariadi, Mohsin Siddiqui

Abstract:

This paper addresses the application of physiological status monitoring (PSM) for assessing the impact of harsh weather conditions on sports activities in universities in Saudi Arabia. Real sports measurement was conducted during sports activities such that the physiological status (HR and BR) of five students were continuously monitored by using Zephyr BioHarnessTM 3.0 sensors in order to identify the physiological bonds and zones. These bonds and zones were employed as indicators of the associated physiological risks of the performed sports activities. Furthermore, a short yes/no questionnaire was applied to collect information on participants’ health conditions and opinions of the applied PSM sensors. The results show the absence of a warning system as a protective aid for the hazardous levels of extremely hot and humid weather conditions that may cause dangerous and fatal circumstances. The applied formulas for estimating maximum HR provides accurate estimations for Maximum Heart Rate (HRmax). The physiological results reveal that the performed activities by the participants are considered the highest category (90–100%) in terms of activity intensity. This category is associated with higher HR, BR and physiological risks including losing the ability to control human body behaviors. Therefore, there is a need for immediate intervention actions to reduce the intensity of the performed activities to safer zones. The outcomes of this study assist the safety improvement of sports activities inside universities and athletes performing their sports activities. To the best of our knowledge, this is the first paper to represent a special case of the application of PSM technology for assessing sports activities in universities considering the impacts of harsh weather conditions on students’ health and safety.

Keywords: PSM, heart rate, HR, breathing rate, BR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
185 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control

Authors: Gorazd Karer

Abstract:

When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents is one of the main tasks of the anesthesiologist. That being said, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. This paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a User-Datagram-Protocol-based (UDP-based) communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of medical-device manufacturer and is implemented in MATLAB-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.

Keywords: Closed-loop control, Depth of Anesthesia, DoA, optical signal acquisition, Patient State index, PSi, UDP communication protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523
184 Data Privacy and Safety with Large Language Models

Authors: Ashly Joseph, Jithu Paulose

Abstract:

Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.

Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104
183 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
182 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
181 Analysis of the Operational Performance of Three Unconventional Arterial Intersection Designs: Median U-Turn, Superstreet and Single Quadrant

Authors: Hana Naghawi, Khair Jadaan, Rabab Al-Louzi, Taqwa Hadidi

Abstract:

This paper is aimed to evaluate and compare the operational performance of three Unconventional Arterial Intersection Designs (UAIDs) including Median U-Turn, Superstreet, and Single Quadrant Intersection using real traffic data. For this purpose, the heavily congested signalized intersection of Wadi Saqra in Amman was selected. The effect of implementing each of the proposed UAIDs was not only evaluated on the isolated Wadi Saqra signalized intersection, but also on the arterial road including both surrounding intersections. The operational performance of the isolated intersection was based on the level of service (LOS) expressed in terms of control delay and volume to capacity ratio. On the other hand, the measures used to evaluate the operational performance on the arterial road included traffic progression, stopped delay per vehicle, number of stops and the travel speed. The analysis was performed using SYNCHRO 8 microscopic software. The simulation results showed that all three selected UAIDs outperformed the conventional intersection design in terms of control delay but only the Single Quadrant Intersection design improved the main intersection LOS from F to B. Also, the results indicated that the Single Quadrant Intersection design resulted in an increase in average travel speed by 52%, and a decrease in the average stopped delay by 34% on the selected corridor when compared to the corridor with conventional intersection design. On basis of these results, it can be concluded that the Median U-Turn and the Superstreet do not perform the best under heavy traffic volumes.

Keywords: Median U-turn, single quadrant, superstreet, unconventional arterial intersection design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
180 An Efficient Approach for Shear Behavior Definition of Plant Stalk

Authors: M. R. Kamandar, J. Massah

Abstract:

The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.

Keywords: Buxus, privet, impact cutting, shear energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
179 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain

Authors: Suman Senapati, Goutam Saha

Abstract:

Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.

Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
178 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: B. Golchin, N. Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
177 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering

Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause

Abstract:

In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.

Keywords: Image processing, Illumination equalization, Shadow filtering, Object detection, Colour models, Image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
176 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: Embedded code generation, embedded C code quality, embedded systems, model-based development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
175 Methane and Other Hydrocarbon Gas Emissions Resulting from Flaring in Kuwait Oilfields

Authors: Khaireyah Kh. Al-Hamad, V. Nassehi, A. R. Khan

Abstract:

Air pollution is a major environmental health problem, affecting developed and developing countries around the world. Increasing amounts of potentially harmful gases and particulate matter are being emitted into the atmosphere on a global scale, resulting in damage to human health and the environment. Petroleum-related air pollutants can have a wide variety of adverse environmental impacts. In the crude oil production sectors, there is a strong need for a thorough knowledge of gaseous emissions resulting from the flaring of associated gas of known composition on daily basis through combustion activities under several operating conditions. This can help in the control of gaseous emission from flares and thus in the protection of their immediate and distant surrounding against environmental degradation. The impacts of methane and non-methane hydrocarbons emissions from flaring activities at oil production facilities at Kuwait Oilfields have been assessed through a screening study using records of flaring operations taken at the gas and oil production sites, and by analyzing available meteorological and air quality data measured at stations located near anthropogenic sources. In the present study the Industrial Source Complex (ISCST3) Dispersion Model is used to calculate the ground level concentrations of methane and nonmethane hydrocarbons emitted due to flaring in all over Kuwait Oilfields. The simulation of real hourly air quality in and around oil production facilities in the State of Kuwait for the year 2006, inserting the respective source emission data into the ISCST3 software indicates that the levels of non-methane hydrocarbons from the flaring activities exceed the allowable ambient air standard set by Kuwait EPA. So, there is a strong need to address this acute problem to minimize the impact of methane and non-methane hydrocarbons released from flaring activities over the urban area of Kuwait.

Keywords: Kuwait Oilfields, ISCST3 model, flaring, Airpollution, Methane and Non-methane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
174 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: Hybrid electric vehicle, hybrid energy storage, battery state estimation, ate of charge, state of health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
173 Internet of Health Things as a Win-Win Solution for Mitigating the Paradigm Shift inside Senior Patient-Physician Shared Health Management

Authors: Marilena Ianculescu, Adriana Alexandru

Abstract:

Internet of Health Things (IoHT) has already proved to be a persuasive means to support a proper assessment of the living conditions by collecting a huge variety of data. For a customized health management of a senior patient, IoHT provides the capacity to build a dynamic solution for sustaining the shift inside the patient-physician relationship by allowing a real-time and continuous remote monitoring of the health status, well-being, safety and activities of the senior, especially in a non-clinical environment. Thus, is created a win-win solution in which both the patient and the physician enhance their involvement and shared decision-making, with significant outcomes. Health monitoring systems in smart environments are becoming a viable alternative to traditional healthcare solutions. The ongoing “Non-invasive monitoring and health assessment of the elderly in a smart environment (RO-SmartAgeing)” project aims to demonstrate that the existence of complete and accurate information is critical for assessing the health condition of the seniors, improving wellbeing and quality of life in relation to health. The researches performed inside the project aim to highlight how the management of IoHT devices connected to the RO-SmartAgeing platform in a secure way by using a role-based access control system, can allow the physicians to provide health services at a high level of efficiency and accessibility, which were previously only available in hospitals. The project aims to identify deficient aspects in the provision of health services tailored to a senior patient’s specificity and to offer a more comprehensive perspective of proactive and preventive medical acts.

Keywords: Health management, Internet of Health Things, remote monitoring, senior patient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
172 Identification of Risks Associated with Process Automation Systems

Authors: J. K. Visser, H. T. Malan

Abstract:

A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.

Keywords: Distributed control system, identification of risks, information technology, process automation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965